检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改token
1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改token
建文件夹model/llama-2-13b-hf。 利用OBS Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中
1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和to
1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改token
操作步骤 登录Imagenet数据集下载官网地址,下载Imagenet21k数据集:http://image-net.org/ 下载格式转换后的annotation文件:ILSVRC2021winner21k_whole_map_train.txt和ILSVRC2021winner21k_whole_map_val
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行服务详情查询 1 2 3 4 5 6 7 from modelarts.session import Session
SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path, local_path) 报错信息如下: 2022-07-06
# 推理代码包 |──llm_tools # 推理工具 |——AscendCloud-OPP #依赖算子包 工作目录介绍 详细的工作目录参考如下,建议参考以下要求
--url:API接口公网地址与"/v1/completions"拼接而成,部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:tokenizer路径,HuggingF
1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改token
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
建文件夹model/llama-2-13b-hf。 利用OBS Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${work
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改token
ModelArts AI识别可以单独针对一个标签识别吗? 标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题
业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。 支持各种部署场景,既能部署为云端的在线推理服务和批量推理任务,也能部署到端,边等各种设备。 一键部署,可以直接推送部
误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github