部署算法服务 查看算法服务清单 购买算法服务包后,可在“算法中心 > 算法服务”中查看当前可以使用的算法服务清单。 算法服务按场景和来源可分为华为自研云上算法、华为自研边缘算法和非华为自研边缘算法。其中华为自研云上算法购买后可直接用于视频分析作业,无需手动部署。 部署算法服务 华
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
协同人的数据监控范围遵循当前用户针对该学习项目选择的数据数据范围 设置完毕后单击【发布】即可,该学习项目创建完成 学习项目管理 任务分派 通过【任务分派】功能可以指派具体人员学习,被选中的学员会将以任务形式接受消息通知和待办,需在规定期限内完成学习任务。管理员可进行实时监控并获得学习相关数据。 操作路
作业。 常规配置:通过界面点选算法使用的常规参数,具体支持的参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值
型以及模型保存格式。 ModelArts自动学习功能训练生成的模型,暂时不支持用于HiLens平台。 线下开发 线下开发指您在本地使用自己熟悉的算法模型开发工具,开发算法模型。 当前仅支持TensorFlow和Caffe引擎开发的算法模型,且您开发的模型需保存为“.pb”或“.c
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明
Louvain算法 概述 Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。 适用场景 Louvain算法适用于社团发掘、层次化聚类等场景。 参数说明 表1 Louvain算法参数说明 参数
训练算法 平台支持算法创建。用户可通过指定算法的运行镜像和上传符合平台规范的算法文件来完成算法的创建,创建的算法可用于训练任务中。创建训练算法时可根据算法类型单独上传训练文件或将训练文件放置在镜像中,通过选择对应镜像时获取算法文件。 添加算法 准备数据。 准备用途为“训练/评测”的镜像和版本,详情可参考镜像仓库。
DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
每一次发布Update版本,发布序列号增加1。 举例 1 0 0 32/64算法标识符:64位填写为1,32位填写为2。当前仅支持64位算法,因此需要填写为1。 算法文件命名规范(基于昇腾310) 命名规范:服务商名称_目标物体_A-版本号-32/64位算法标识符.tar.gz 举例:如fws_helmet_A-V1
准备ITS800算法 算法文件命名规范(基于昇腾310) 命名规范:服务商名称_目标物体_A-版本号-32/64位算法标识符.tar.gz 举例:如fws_helmet_A-V1.0.0-1.tar.gz 服务商名称:建议使用服务商名称简写。 目标物体:建议使用目标物体的英文单词
拆分算法概述 支持的拆分算法概览 DDM是一个支持既分库又分表的数据库服务,目前DDM分库函数与分表函数的支持情况如下: 表1 拆分算法概览表 拆分函数 描述 能否用于分库 能否用于分表 MOD_HASH 简单取模 是 是 MOD_HASH_CI 简单取模(大小写不敏感) 是 是
Cesna算法(cesna) 功能介绍 根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。
使用ModelArts Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择
metadata 参数 参数类型 描述 id Integer 算法uuid,创建算法时无需填写。 name String 算法名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 description String 对算法的描述,默认为“NULL”,字符串的长度限制为[0, 256]。
感谢您更深入的了解、学习并使用基因容器服务(GeneContainer Service,GCS)。 基因容器服务GCS提供云端基因分析解决方案,支持DNA、RNA、液态活检等主流生物基因分析场景。基因容器基于轻量级容器技术,结合大数据、深度学习算法,优化官方标准算法,为您提供灵活可定制的分析流程、秒级可伸缩的高可靠资源。
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1
运筹优化算法基于实际约束场景(如成本和收益、可用资源和需求、目标和限制等),运用数学规划和元启发式算法等多种优化引擎找到最佳的解决方案,去解决实际问题。 运筹优化算法的主要研究对象是各种有组织的管理问题及其生产经营活动,算法的目的是针对所研究的对象求得一个合理运用人力、物力和财力的
迭代次数(max_iterations)和收敛精度(convergence)。 算法终止的条件:要么达到设置的最大迭代次数,要么满足收敛精度,满足其一即可。 一般来说,收敛精度设置得越小,迭代次数设置得越大,算法的效果越好。 在固定收敛精度的情况下,要想算法优先满足收敛精度,迭代次数设置得尽量大。
您即将访问非华为云网站,请注意账号财产安全