检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
同态”的全过程流向,基本符合业界已公开的PSI算法流程和同态加密流程。 图2 加密流程 图3 加密流程 父主题: 可验证代码示例
+ 秘密分享”的全过程流向,基本符合业界已公开的PSI算法流程和秘密分享流程。 图2 加密流程 图3 加密流程 父主题: 基于TICS实现端到端的企业积分查询作业
创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用TICS可信联邦学习进行联邦建模
作业。 常规配置:通过界面点选算法使用的常规参数,具体支持的参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值
方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
约束限制 纵向联邦作业XGBoost算法只支持两方参与训练。 训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:
gender字段先填补缺失值,再将其映射成算法可以理解的数值型,比如将woman映射成0,man映射成1,此即为离散特征编码。 图1 数据集样例 数据预处理通常被用于评估和预测场景。本文以使用训练数据训练预处理作业,然后再将预处理方法应用于评估/预测数据为例进行说明。 前提条件 已提前准备好训练数据,和评估/预测数据。
统计分析型的作业,可能被作业执行方通过增删某个碰撞的id,得到两次作业之间的差值,从而推算出实际taxpay和water_fee。 开启空间中的差分隐私开关保护敏感数据,符合差分隐私条件的统计作业,会自动应用差分隐私算法对计算结果进行加噪保护, 在一定误差范围内保证数据无法被恶意偷取。 图1 差分隐私开关
同一个空间中的用户,在使用可信计算服务时(多方安全计算和可信联邦学习),需要部署计算节点,将数据上传,作为可信计算服务的输入,通过执行多方安全计算和可信联邦学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container Engine)服务和智能边缘平台(IEF,Intelligent
作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。 最终将计算完成的结果加密返回给作业发起方。
统计分析型的作业,可能被作业执行方通过增删某个碰撞的id,得到两次作业之间的差值,从而推算出实际taxpay和water_fee。 开启空间中的差分隐私开关保护敏感数据,符合差分隐私条件的统计作业,会自动应用差分隐私算法对计算结果进行加噪保护, 在一定误差范围内保证数据无法被恶意偷取。 图1 差分隐私开关
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;
机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见的场景,TICS能够很方便的支撑联盟和计算节点升级和回滚。回滚也称为回退,即当发现升级出现问题时,让联盟和计算节点自动回滚到老的版本。TICS已实现了在异常状态下的自动回滚。
创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦
络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面,选择实时预测的Tab页,单击创建。 图1 创建作业 在弹出的对话框中编辑“作业名称”,选择“算法类型”。 选择“算法类型”之后,勾选“
模型训练,但常面临数据泄露和隐私等挑战。联邦建模采用分布式架构进行部署和建模,参与联合营销的企业原始和明细数据不出库的前提下进行跨域数据建模,实现精准营销,同时保障企业数据安全与个人隐私。 优势: 原始数据不出企业安全域、不出库,实现“数据不动、算法动”,数据使用自主可控。 联
或者包含下列任何字符:\ / : * ? " < > |,长度要求在1~128之间。 algorithm_type String 纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM,LOGISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET
数据管理概述 TICS的数据管理由“连接器管理”和“数据管理”两部分来实现: 连接器是可信智能计算服务提供的一项访问参与方数据资源的功能。参与方填写连接信息来创建对应类型的连接器,并通过这些连接器访问到各类型资源的结构化信息。当前支持MRS服务(Hive)、本地数据集、RDS数据