检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分记住这些数据,导致无法泛化到其他数据上,最终发生过拟合现象。 欠拟合:当微调数据量很小
训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题: 典型训练问题和优化策略
生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深感敬佩。在宋
参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。 父主题: 典型训练问题和优化策略
了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 典型训练问题和优化策略
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加
典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题: 典型训练问题和优化策略
选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。 图3 创建评估 输入评估名称和描述。 图4 输入评估名称
Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:
Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:
生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深感敬佩。在宋
语义缓存(同步适配langchain语义缓存暂时不支持expire_after_write) 语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 from pangukitsappdev
private int maximumSize = -1; 语义缓存:语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 import com.huaweicloud
输入输出长度。修改部署时扩缩容和外推场景互斥,每次只能修改一个。 当前仅盘古-NLP-N4系列模型以及基于它们训练的模型支持外推。 图1 模型部署外推升级 扩缩容部署实例数量 扩缩容是指运行中的模型支持增加或减少模型部署的实例数。 修改部署时扩缩容和外推场景互斥,每次只能修改一个。
创建自监督微调训练任务 有监督训练 使用含有标记的数据进行模型训练,以学习输入和输出之间的映射关系。 创建有监督训练任务 模型评估 创建模型评估任务 训练完成后评估模型的回答效果。 创建模型评估任务 查看模型评估结果 查看模型评估指标和评估结果。 查看评估任务详情 模型压缩 - 通过模型压缩技
命令案例:科技行业公司的平均利润和市值是多少 通过调用大模型,获取更多数据: 1. "请给我科技行业公司的利润平均值和市值平均值。" 2. "科技行业的公司平均利润和市值都是多少?" 3. "我需要知道科技行业公司的平均利润和平均市值。" 4. "能告诉我一下科技行业公司的平均利润和市值是多少吗?"
提示工程是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户了解大型语言模型的能力和局限性。 提示工程不仅涉及设计和研发提示词,还包括与大型语言模型的交互和研发中的各种技能和技术。它在实现和对接大型语言模型、
的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。 除了短视频风格的口播文案,营销文案还
ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可