检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
提供简单易用、安全可靠的镜像管理功能,帮助您快速部署容器化服务。您可以通过界面、社区CLI和原生API上传、下载和管理容器镜像。 您制作的自定义镜像需要上传至SWR服务。ModelArts开发环境、训练和创建模型使用的自定义镜像需要从SWR服务管理列表获取。 图1 获取镜像列表 对象存储服务
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MindSpore+Ascend)
删除训练作业版本 查询训练作业版本列表 创建训练作业版本 停止训练作业版本 更新训练作业描述 删除训练作业 获取训练作业日志的文件名 查询预置算法 查询训练作业日志 父主题: 训练管理(旧版)
据并行分布式训练原理和代码改造点。 创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+GPU):提供了分布式训练调测具体的代码适配操作过程和代码示例。 示例:创
otas 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workspace_id 是 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。
请求超时返回Timeout 自定义镜像导入模型部署上线调用API报错 在线服务预测报错DL.0105 时序预测-time_series_v2算法部署在线服务预测报错 父主题: 推理部署
在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。 镜像:选择上传的自定义镜像。 启动命令: cd /home/ma-user/work/code/Swin-Transformer
次数、LOSS和吞吐数据按照“迭代次数|loss|吞吐”格式记录在日志中,AI Gallery通过环境变量找到日志,从中获取实际数据绘制成“吞吐”和“训练LOSS”曲线,呈现在训练的“指标效果”中。具体请参见查看训练效果。 说明: 日志文件中的迭代次数、LOSS和吞吐数据必须按照
“描述”、“版本”和“限制”等信息。 修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”。封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图3 修改封面图和二级标题 编辑许可证类型
otas 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workspace_id 是 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。
task_version_id String 数据处理任务的版本ID。 template TemplateParam object 算法模板,如算法ID和参数等。 unmodified_sample_count Integer 处理后无修改的图片数量。 update_time Long
处理方法 “nvidia-smi”是一个NVIDIA GPU监视器命令行工具,用于查看GPU的使用情况和性能指标,可以帮助用户进行GPU优化和故障排除。 但是建议在业务软件或训练算法中,避免频繁使用“nvidia-smi”命令功能获取相关信息,存在锁死的风险。出现D+进程后可以尝试如下方法:
model_path) 初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。 __init__(self, model_path) 初始化方法,适用于机器学习框架模型。该方法内初始化模型的路径(self.
Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。OBS的更多信息请参见《对象存储服务产品文档》。 表1 ModelArts各环节与OBS的关系 功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。
Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。OBS的更多信息请参见《对象存储服务产品文档》。 表1 ModelArts各环节与OBS的关系 功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。
际规划修改。 对于ChatGLMv3-6B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中
在基础设置中设置“许可证”、“语言”、“框架”、“任务类型”和“硬件资源”等信息。 单击“确定”。 编辑设置 基本设置 单击右侧的,可以更改Notebook名称和描述。 编辑完成之后单击“确定”。 关联资产 在输入框中输入资产ID后,单击“关联”即可关联其他资产,更方便其他使用者进行查找。算法可以关联数据集资产。 选
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
Face权重时,对应的存放地址。请根据实际规划修改。 对于ChatGLMv3-6B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自
际规划修改。 对于ChatGLMv3-6B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本