检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_tr
容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_tr
容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_tr
用户间的专属资源池物理隔离,公共资源池仅提供逻辑隔离,专属资源池的隔离性、安全性要高于公共资源池。 专属资源池用户资源独享,在资源充足的情况下,作业是不会排队的;而公共资源池使用共享资源,在任何时候都有可能排队。 专属资源池支持打通用户的网络,在该专属资源池中运行的作业可以访问打
需修改finetune_onevision_ascend.sh中的数据集和模型路径为步骤七和步骤八的下载完成后的路径 路径修改说明: 执行训练脚本前,需修改pretrain_clip_ascend.sh中的数据集和模型路径为步骤七和步骤八的下载完成后的路径,如图1所示; 执行训练脚本前,修改fin
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载
WebUI如何适配? WebUI一般可以分为前端和后端实现两部分,后端的实现模式种类多样,并且依赖了多个的第三方库,当前在WebUI适配时,并没有特别好的方式。在对后端实现比较理解的情况下,建议针对具体的功能进行Diffusers模块的适配与替换,然后针对替换上去的Diffusers,对其p
PO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始
per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs
per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs
per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs
当训练数据可以直接使用,无需二次处理时,可以直接将数据上传至OBS桶。在创建训练作业时,训练的输入参数位置可以直接填写OBS桶路径。 当训练数据集的数据未标注或者需要进一步的数据预处理,可以先将数据导入ModelArts数据管理模块进行数据预处理。在创建训练作业时,训练的输入参数位置可以选择数据管理模块的数据集。
规格选择卡数尽量少,如可以选择1卡,相比于选择8卡排队几率大大降低。 可以尝试使用其他Region(如北京四切换为上海一)。 如果有长期的资源使用诉求,可以购买独占使用的专属资源池。 专属资源池: 如有多个可用的专属资源池,可尝试选择其他较为空闲的资源池。 可清理当前资源池下的其他资源,如停止长时间不使用的Notebook。
Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。 镜像选择已注册的自定义镜像,资源类型选择创建好的专属资源池,规格推荐选择“Ascend:
查看已上传的镜像。但在ModelArts中还需要完成镜像注册后,才能在后续的Notebook中使用。镜像注册的操作步骤如下: 登录ModelArts管理控制台,在左侧导航栏单击“镜像管理”。 在“镜像管理”页面右上角,单击“注册镜像”。 在“注册镜像”页面,选择已上传的镜像源,按
pipeline的主要作用是将onnx模型进行一系列编排,并在onnx Runtime上按照编排顺序执行。因此,需要将转换得到的mindir模型按照相同的逻辑进行编排,并在MindSpore Lite上执行。只需要将原始onnx的pipeline中涉及到onnx模型初始化及推理的接口替换为MindSpore
docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部