检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。Deep
HPC型文件系统来加速对OBS对象存储中的数据访问,并将生成的结果数据异步持久化到OBS对象存储中长期低成本保存。 图1 基于OBS+SFS Turbo的存储解决方案 OBS + SFS Turbo存储加速的具体方案请查看: 面向AI场景使用OBS+SFS Turbo的存储加速实践。 设置训练存储加速
log”文件将会被自动上传至ModelArts训练作业的日志目录(OBS)。如果本地相应目录没有生成大小>0的日志文件,则对应的父级目录也不会上传。因此,PyTorch NPU的plog日志是按worker存储的,而不是按rank id存储的(这是区别于MindSpore的)。目前,PyTorch NPU并不依赖rank
如何在ModelArts的Notebook中上传下载OBS文件? 在Notebook中可以通过调用ModelArts的Moxing接口或者SDK接口与OBS交互,将Notebook中的文件上传至OBS,或者下载OBS中的文件至Notebook中。 图1 Notebook中上传下载OBS文件
Gallery的AI说模块为开发者提供自由分享各类AI领域内知识和经验的平台。开发者既可以发布个人技术文章,也可以阅读和学习他人分享的技术文章。 案例库介绍 AI Gallery的案例库是面向场景化交付的AI资产的组合和使用案例。案例中沉淀了基于业务场景的AI知识、经验和部分通用的业务逻
昇腾云服务6.3.904版本说明 昇腾云服务6.3.904版本发布支持的软件包和能力说明如下,软件包获取路径:Support-E网站。 发布包 软件包特性说明 配套说明 备注 昇腾云模型代码 三方大模型,包名:AscendCloud-3rdLLM PyTorch框架下支持如下模型训练:
PyTorch在昇腾AI处理器的加速实现方式是以算子为粒度进行调用(OP-based),即通过Python与C++调用CANN层接口Ascend Computing Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。
ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理。 大规模分布式训练能力,加速大模型研发。 提供高性价比国产算力。 多年软硬件经验沉淀,AI场景极致优化。 加速套件,训练、推理、数据访问多维度加速。 一站式端到端生产工具链,一致性开发体验
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
instance_id,npu Lite Server支持的事件列表 通过对接CES,可以将业务中的重要事件或对云资源的操作事件收集到CES云监控服务,并在事件发生时进行告警。Lite Server支持的事件来源主要是BMS,具体事件列表如下。 表2 Lite Server支持的事件列表 事件来源 命名空间 事件名称
等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。 在AI
下文提供一个快速配置的案例,配置完成后您可登录到节点查看加速卡信息并完成一个训练任务。在运行此案例前,您需要购买资源,购买资源的步骤请参考Lite Cluster资源开通。 登录节点。 (推荐)方式1:通过绑定公网IP的方式 客户可以为需要登录的节点绑定公网IP,然后可以通过Xshel
特权池信息数据显示均为0%如何解决? 问题现象 特权池基本信息页面数据均显示为0%(如CPU使用率、内存使用率、加速卡使用率、加速卡显存使用率)。 原因分析 原因是集群没有安装ICAgent。新建特权池时默认会安装ICAgent,可能由于用户自行卸载ICAgent,导致资源池数据显示异常。
针对ModelArts中创建的模型,支持以下发布方式: 发布至AI Gallery AI Gallery是在ModelArts的基础上构建的开发者生态社区,提供算法、模型、数据集等内容的共享,为高校科研机构、模型开发商、解决方案集成商、企业级个人开发者等群体,提供安全、开放的共享,加速AI资产的开发与落地。
供轻量级的虚拟化,以便隔离进程和资源。尽管容器技术已经出现很久,却是随着Docker的出现而变得广为人知。Docker是第一个使容器能在不同机器之间移植的系统。它不仅简化了打包应用的流程,也简化了打包应用的库和依赖,甚至整个操作系统的文件系统能被打包成一个简单的可移植的包,这个包
Calling的模型使用 Dify是一个能力丰富的开源AI应用开发平台,为大型语言模型(LLM)应用的开发而设计。它巧妙地结合了后端即服务(Backend as Service)和LLMOps的理念,提供了一套易用的界面和API,加速了开发者构建可扩展的生成式AI应用的过程。 操作步骤