检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。 在AI
剪枝 什么是剪枝 剪枝是一种大模型压缩技术的关键技术,旨在保持推理精度的基础上,减少模型的复杂度和计算需求,以便大模型推理加速。 剪枝的一般步骤是:1、对原始模型调用不同算法进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。
要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS Turbo缓存中,并可被下游业务环节继续读取并处理,结果数据可以异步方式导出到关联的OBS对象存储
引入moxing framework的数据下载加速特性的相关说明 在使用基于ModelArts预置镜像的训练作业时,可以引入moxing framework的数据下载加速特性。加速特性适用场景为:文件数在100w~1000w的场景、单个大文件及文件大小大于20GB的场景。 登录ModelAr
适用于已经自建AI开发平台,仅有算力需求的用户,提供高性价比的AI算力,并预装主流AI开发套件以及自研的加速插件。 ModelArts Lite-Cluster 面向k8s资源型用户,提供k8s原生接口,用户可以直接操作资源池中的节点和k8s集群。 适用于已经自建AI开发平台,仅有算力需求的用户。要求用户具备k8s基础知识和技能。
训练作业的任务节点数要大于或等于3,否则会跳过ranktable路由加速。建议在大模型场景(512卡及以上)使用ranktable路由加速。 脚本执行目录不能是共享目录,否则ranktable路由加速会失败。 路由加速的原理是改变rank编号,所以代码中对rank的使用要统一,如果rank的使用不一致会导致训练异常。
同计费类型/计费周期的资源,解决如下用户的使用场景: 用户在包长周期的资源池中无法扩容短周期的节点。 用户无法在包周期的资源池中扩容按需的节点(包括AutoScaler场景)。 支持SFS产品权限划分 支持SFS权限划分特性,可以实现训练场景中,挂载的SFS的文件夹能够权限控制,
在ModelArts的Notebook的Jupyterlab可以安装插件吗? Jupyter可以安装插件。 目前jupyter插件多数采用wheel包的形式发布,一次性完成前后端插件的安装,安装时注意使用jupyter服务依赖的环境“/modelarts/authoring/no
本小节介绍Notebook开发环境、训练任务实例的目录挂载情况(以下挂载点在保存镜像的时候不会保存)。详情如下: Notebook 表1 Notebook挂载点介绍 挂载点 是否只读 备注 /home/ma-user/work/ 否 客户数据的持久化目录。 /data 否 客户PFS的挂载目录。 /cache
out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deep
查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令是一种基于ICMP协议(Internet Control Message Protocol)的网络诊断工具,利用ICMP协议向目标主机发送数据包并接收返回的数据包来判断网络连接质量。当安全组的入方向
所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。 进入容器环境,创建自己的工作目录。 由于在Snt9B裸金属服务器环境配置指南的配置环境步骤中,在启动容器时将物理机的home目
状态码: 200 表4 响应Body参数 参数 参数类型 描述 count Integer 不分页的情况下符合查询条件的总数量。 total_count Integer 当前查询结果的数量,不设置offset、limit查询参数时,count与total相同。 engine_runtimes
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)
Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业
络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。 密钥对 弹性裸金属支持SSH密钥对的方式进行登录,用户无需输入密码就可以登录到弹性裸金属服务器,因此可以防止由于密码被拦截、破解造成的账户密码泄露,从而提高弹性裸金属服务器的安全性。 说明:
Workflow中所有出现占位符相关的配置对象时,均需要设置默认值,或者直接使用固定的数据对象 方法的执行依赖于Workflow对象的名称:当该名称的工作流不存在时,则创建新工作流并创建新执行;当该名称的工作流已存在时,则更新存在的工作流并基于新的工作流结构创建新的执行 workflow.release_and_run()
杂,必须针对每个不同业务的Pipeline进行单独适配。 本文以Stable Diffusion v1.5的图生图为例,通过可以直接执行的样例代码介绍Diffusers的昇腾迁移过程。对于其他pipeline的迁移,可以在充分理解其代码的基础上,参考本文的思路进行举一反三。Stable
欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP1
欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP1