检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
temporal paths算法,返回距离最短的时序路径 foremost:运行foremost temporal paths算法,返回尽可能早的到达目标节点的时序路径 fastest:运行fastest temporal paths算法,返回耗费时间最短的时序路径 表4 dynamicRange
Gremlin命令怎么执行和查看运行结果? 执行 在图编辑器页面,您可以在此页面对当前图进行查询分析,在页面下方的Gremlin输入框中,输入一行Gremlin命令后,按“回车”键执行。 查看结果 执行Gremlin命令后在“运行记录”可以看到命令运行情况,在“查询结果”可以看到
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边和百亿边规格的图暂不支持扩副本。 进行扩副本操作后,不支持扩容图操作。 如果要对图进行扩容和扩副本两个操作,需要您先进行扩容图操作,再进行扩副本操作。 调试
功能介绍 根据输入参数,执行PageRank算法。 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_i
如果要修改参数,单击画布左下方进行设置,在时间轴设置框内填写,此处不可填写。 source:指定单个节点作为起始节点ID。 targets:终点节点ID集合(可设置多个终点节点ID)。 k:拓展深度,表示要拓展的最大级数,取值范围为1-100,默认值为3。 strategy:运
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边和百亿边规格的图暂不支持扩副本。 进行扩副本操作后,不支持变更图规格操作。 如果要对图进行变更规格和扩副本两个操作,需要您先进行变更图规格操作,再进行扩副本操作。
PageRank算法 概述 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个Pag
说明 source 是 String 计算的节点ID。 响应参数 参数 类型 说明 errorMessage String 系统提示信息,执行成功时,字段可能为空。执行失败时,用于显示错误信息。 errorCode String 系统提示信息,执行成功时,字段可能为空。执行失败时,用于显示错误码。
连通分量算法(Connected Component) 概述 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly connected compone
理,对k跳过程进行逐层过滤,列出满足过滤条件的第k跳节点或边。Filtered-query接口说明可参考Filtered-query API。 在图引擎编辑器左侧探索区的“路径拓展模块”内,填写以下参数: 路径起点:查询起始节点ID列表。有以下几种方法可以查询: 框选点的方式:画布上已经有点的情况下,
标签:统计当前画布中所有的标签名称和对应的点边数量。 节点权重Top10:当前图中边数量最多的十个节点。 以下图统计信息为例,图中共有7个标签。标签为FUND_PRODV的点有5个,标签为FIN_PRODV的点有3个。 图中权重最大的是节点id为1101的点,共有5条边。排名第十的是节点id为1103的点,共有1条边。
查看实时请求 功能介绍 查看当前主节点上的实时请求。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/om/real-time-queries?summary= 表1 路径参数 参数 是否必选 类型 说明 project_id
List<NetworkDetail> 节点网络详情。 表4 overview参数说明 参数 类型 说明 ges_instance_name String 节点名称。 instance_id String 节点ID。 work_ip String 具有该label的点的数量。 role String 节点角色。 cpu_usage
带过滤全最短路径(Filtered All Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘、路径规划、网络规划等场景。 参数说明 表1 Filtered All Shortest
一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 Louvain算法
表示要做的查询类型,可选的值有: inV:入点 outV:出点 bothV:入点和出点 vertex:所有节点。第一层filter可用,若起始传入节点,则第一层输出为传入的节点;若起始传入节点为空,则第一层输出为所有节点 in:入边 out:出边 both:入边和出边 edge:所有边,仅第一层filter可用,使用方式与vertex类似
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选