检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
temporal paths算法,返回距离最短的时序路径 foremost:运行foremost temporal paths算法,返回尽可能早的到达目标节点的时序路径 fastest:运行fastest temporal paths算法,返回耗费时间最短的时序路径 表4 dynamicRange
标签:统计当前画布中所有的标签名称和对应的点边数量。 节点权重Top10:当前图中边数量最多的十个节点。 以下图统计信息为例,图中共有7个标签。标签为FUND_PRODV的点有5个,标签为FIN_PRODV的点有3个。 图中权重最大的是节点id为1101的点,共有5条边。排名第十的是节点id为1103的点,共有1条边。
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_i
PageRank算法 概述 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个Pag
算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点。 URI POST /ges/v1.0
动态拓展 指定某个起始节点id,结合消息传递时间递增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述
根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以基于source节点个性化地计算网络节点的相关性和重要
游走过程提前结束参数:候选推荐节点访问次数的最小值。 说明: 对于一个节点,如果其在随机游走过程被访问到,且被访问到的次数达到“nv”,则该节点将记入候选推荐的节点。 Int 1~10 5 np 否 游走过程提前结束参数:候选推荐节点个数。 说明: 若某个source节点的候选推荐节点达到“np”
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边和百亿边规格的图暂不支持扩副本。 进行扩副本操作后,不支持扩容图操作。 如果要对图进行扩容和扩副本两个操作,需要您先进行扩容图操作,再进行扩副本操作。 调试
功能介绍 根据输入参数,执行PageRank算法。 PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。
如果要修改参数,单击画布左下方进行设置,在时间轴设置框内填写,此处不可填写。 source:指定单个节点作为起始节点ID。 targets:终点节点ID集合(可设置多个终点节点ID)。 k:拓展深度,表示要拓展的最大级数,取值范围为1-100,默认值为3。 strategy:运
一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 Louvain算法
扩副本(2.2.23) 功能介绍 扩副本能力允许动态扩容多个从节点,扩容的从节点可以处理读请求,从而提高读请求性能。 一万边的图暂不支持扩副本。 进行扩副本操作后,不支持变更图规格操作。 如果要对图进行变更规格和扩副本两个操作,需要您先进行变更图规格操作,再进行扩副本操作。 持久化版图不支持调用接口进行扩副本操作。
objects 节点网络详情。 表5 overview参数说明 参数 类型 说明 ges_instance_name String 节点名称。 instance_id String 节点ID。 work_ip String 节点ip。 role String 节点角色。 cpu_usage
一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 Louvain算法
带过滤全最短路径(Filtered All Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘、路径规划、网络规划等场景。 参数说明 表1 Filtered All Shortest
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数