检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MRS支持什么类型的分布式存储? 问: MRS集群支持什么类型的分布式存储?有哪些版本? 答: MRS集群内使用主流的大数据Hadoop,目前支持Hadoop 3.x版本,并且随集群演进更新版本。 同时MRS也支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式。
HDFS文件系统目录简介 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在
HDFS文件系统目录简介 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在
配置使用分布式缓存执行MapReduce任务 配置场景 本章节操作适用于MRS 3.x及之后版本。 分布式缓存在两种情况下非常有用。 滚动升级 在升级过程中,应用程序必须保持文字内容(jar文件或配置文件)不变。而这些内容并非基于当前版本的Yarn,而是要基于其提交时的版本。一般
数据存储在OBS和HDFS有什么区别? MRS集群处理的数据源来源于OBS或HDFS,HDFS是Hadoop分布式文件系统(Hadoop Distributed File System),OBS(Object Storage Service)即对象存储服务,是一个基于对象的海量存
ClickHouse写入分布式表时发送数据文件到远端分片失败 本章节仅适用于MRS 3.3.1及之后版本。 告警解释 ClickHouse实例分布式表检查模块300秒检查一次,如果连续失败的次数超过配置的阈值,则触发上报告警,此时ClickHouse写入分布式表的节点无法正常发送数据文件到远端分片节点。
小文件优化 操作场景 Spark SQL表中,经常会存在很多小文件(大小远小于HDFS的块大小),每个小文件默认对应Spark中的一个Partition,即一个Task。在有很多小文件时,Spark会启动很多Task,此时当SQL逻辑中存在Shuffle操作时,会大大增加hash分桶数,严重影响系统性能。
配置使用分布式缓存执行MapReduce任务 配置场景 本章节操作适用于MRS 3.x及之后版本。 分布式缓存在两种情况下非常有用。 滚动升级 在升级过程中,应用程序必须保持文字内容(jar文件或配置文件)不变。而这些内容并非基于当前版本的Yarn,而是要基于其提交时的版本。一般
MRS存算分离配置流程说明 MRS支持在大数据存储容量大、计算资源需要弹性扩展的场景下,用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式,从而实现按需灵活扩展资源、低成本的海量数据分析方案。 大数据存算分离场景,请务必使用OBS并行文件系统(并行文件系统),使用普通对象桶会对集群性能产生较大影响。
Colocation 同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。
HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在现有文件之后的添加操作。HDF
3”从集群中划分出的计算资源。 存储资源包括磁盘或第三方存储系统。 租户的存储资源是从集群总存储资源中划分出的,租户之间不可以互占存储资源。 图中:存储资源1、存储资源2和存储资源3分别是租户“t1”、租户“t2”和租户“t3”从集群中划分出的存储资源。 若用户想要使用租户资源或
当分级存储策略为LAZY_PERSIST时为什么文件的副本的存储类型为DISK 问题 当文件的存储策略为LAZY_PERSIST时,文件的第一副本的存储类型应为RAM_DISK,其余副本为DISK。 为什么文件的所有副本的存储类型都是DISK? 回答 当用户写入存储策略为LAZY
使用特定的规则扫描Hbase表。 运行前置操作 安全模式下Spark Core样例代码需要读取两个文件(user.keytab、krb5.conf)。user.keytab和krb5.conf文件为安全模式下的认证文件,需要在FusionInsight Manager中下载principal用户的
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的HBase数据表。 开发思路 设置scan的规则,例如:setCaching。
ase利用Hadoop HDFS作为其文件存储系统。HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持。除了HBase产生的一些日志文件,HBase中的所有数据文件都可以存储在Hadoop HDFS文件系统上。 HDFS和MapReduce的关系
使用特定的规则扫描Hbase表。 运行前置操作 安全模式下Spark Core样例代码需要读取两个文件(user.keytab、krb5.conf)。user.keytab和krb5.conf文件为安全模式下的认证文件,需要在FusionInsight Manager中下载principal用户的
据插入到分布式表,分布式表引擎会按轮训算法将数据发送到各个分片。 该键是写分布式表保证数据均匀分布在各分片的唯一方式。 规则 不建议写分布式表。 由于分布式表写数据是异步方式,客户端SQL由Balancer路由到一个节点之后,一批写入数据会先落入写入的节点,随后根据分布式表sch
分布式Scan HBase表 场景说明 用户可以在Spark应用程序中使用HBaseContext的方式去操作HBase,使用hbaseRDD方法以特定的规则扫描HBase表。 数据规划 使用操作Avro格式数据章节中创建的HBase数据表。 开发思路 设置scan的规则,例如:setCaching。
独立的。 同时ClickHouse依靠Distributed引擎实现了分布式表机制,在所有分片(本地表)上建立视图进行分布式查询,使用很方便。ClickHouse有数据分片(shard)的概念,这也是分布式存储的特点之一,即通过并行读写提高效率。 CPU架构为鲲鹏计算的Click