检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Top10、Lag挤压、CPU/Memory监控等。 Eagle新版本中改名为EFAK。 方案架构 Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消
函数有所了解。 作为存储引擎,通常情况下Kudu会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
设置HDFS存储策略 功能简介 为HDFS上某个文件或文件夹指定存储策略。 代码样例 在“${HADOOP_HOME}/etc/hadoop/”下的“Hdfs-site.xml”中设置如下参数。 <name>dfs.storage.policy.enabled</name> <value>true</value>
join的执行逻辑差别很大,建议使用global join做分布式表查询。 【场景说明】 查询的集群有N个分片(shard) A_all是分布式表,对应的本地表是A_local B_all是分布式表,对应的本地表是B_local 【分布式表直接join示例】 SELECT * FROM A_all
HBase开源增强特性 HBase开源增强特性:HIndex HBase是一个Key-Value类型的分布式存储数据库。每张表的数据按照RowKey的字典顺序排序,因此,如果按照某个指定的RowKey去查询数据,或者指定某一个RowKey范围去扫描数据时,HBase可以快速定位到
开发思路 作为存储引擎,通常情况下会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 于此同时可以在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
Flume日志采集概述 Flume是一个分布式、可靠和高可用的海量日志聚合的系统。它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。支持在系统中定制各类数据发送方,用于收集数据。同时,提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
目前MRS集群支持在线创建如下几种类型的作业: MapReduce:提供快速并行处理大量数据的能力,是一种分布式数据处理模式和执行环境,MRS支持提交MapReduce Jar程序。 Spark:基于内存进行计算的分布式计算框架,MRS支持提交SparkSubmit、Spark Script和Spark SQL作业。
缩容MRS集群 用户可以根据业务需求量,通过简单的缩减Core节点或者Task节点,对集群进行缩容,以使MRS拥有更优的存储、计算能力,降低运维成本。 当集群正在进行主备同步操作时,不允许进行缩容操作。 包周期集群不支持该方式缩容,仅按需计费集群支持该方式缩容。如需缩容包周期计费
使用CDM服务迁移MRS HDFS数据至OBS 应用场景 MRS支持在大数据存储容量大、计算资源需要弹性扩展的场景下,用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算分离模式,从而实现按需灵活扩展资源、低成本的海量数据分析方案。 CDM支持文件到文件类数据的迁移,本章节以MRS
Flume日志采集概述 Flume是一个分布式、可靠和高可用的海量日志聚合的系统。它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。支持在系统中定制各类数据发送方,用于收集数据。同时,提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
扩容MRS集群 MRS的扩容不论在存储还是计算能力上,都可以简单地通过增加Core节点或者Task节点来完成,不需要修改系统架构,降低运维成本。集群Core节点不仅可以处理数据,也可以存储数据。可以在集群中添加Core节点,通过增加节点数量处理峰值负载。集群Task节点主要用于处理数据,不存放持久数据。
优化Flink内存GC参数 操作场景 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩
创建HBase索引进行数据查询 操作场景 HBase是一个Key-Value类型的分布式存储数据库,HIndex为HBase提供了按照某些列的值进行索引的能力,缩小搜索范围并缩短时延。 使用约束 列族应以“;”分隔。 列和数据类型应包含在“[]”中。 列数据类型在列名称后使用“->”指定。
HBase本地二级索引介绍 场景介绍 HBase是基于Key-Value的分布式存储数据库,基于rowkeys对表中的数据按照字典进行排序。如果您根据指定的rowkey查询数据,或者扫描指定rowkey范围内的数据,HBase可以快速查找到需要读取的数据,从而提高效率。在大多数实
快速使用HBase进行离线数据分析 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。本章节提供从零开始使用HBase的操作指导,通过客户端实现创建表,往表中插入数据,修改表,读取表数据,删除表中数据以及删除表的功能。 背景信息 假定用户开发一个应用程序,用于管理
OpenTSDB简介 OpenTSDB是一个基于HBase的分布式、可伸缩的时间序列数据库。OpenTSDB的设计目标是用来采集大规模集群中的监控类信息,并可实现数据的秒级查询,解决海量监控类数据在普通数据库中查询存储的局限性。 OpenTSDB使用场景有如下几个特点: 采集指标
创建HBase索引进行数据查询 操作场景 HBase是一个Key-Value类型的分布式存储数据库,HIndex为HBase提供了按照某些列的值进行索引的能力,缩小搜索范围并缩短时延。 使用约束 列族应以“;”分隔。 列和数据类型应包含在“[]”中。 列数据类型在列名称后使用“->”指定。
HBase本地二级索引介绍 场景介绍 HBase是基于Key-Value的分布式存储数据库,基于rowkeys对表中的数据按照字典进行排序。如果您根据指定的rowkey查询数据,或者扫描指定rowkey范围内的数据,HBase可以快速查找到需要读取的数据,从而提高效率。在大多数实