检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
使用IAM用户认证 “account”填写您的账号名,“username”填写您的IAM用户名。 1 2 3 4 5 6 7 from modelarts.session import Session # 认证用的password硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
适配加速芯片Ascend的一组AI框架+运行环境+启动方式的集合。 由于主流的Snt9系列Ascend加速卡都跑在ARM CPU规格的机器上,因此上层docker镜像也都是ARM镜像。相对于GPU场景的镜像中安装了与GPU驱动适配的CUDA(由英伟达推出的统一计算架构)计算库,A
需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数相加超过100张,如果某些图片的标签具有相似性,则
转换关键参数准备 对应的模型转换成MindIR格式,通过后端绑定的编译形式来运行以达到更好的性能(类似静态图的运行模式),所以需要提前准备以下几个重点参数。 输入的inputShape,包含batch信息。 MSLite涉及到编译优化的过程,不支持完全动态的权重模式,需要在转换时确定对应的inp
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
景。 Standard的模型训练功能提供了界面化的训练调试环境和生产环境,用户可以使用自己的数据和算法,利用Standard提供的计算资源开展模型训练。具体请参见使用ModelArts Standard训练模型。 Standard的推理部署功能提供了界面化的推理部署生产环境,AI
此时可以进入debug模式,代码运行暂停在该行,且可以查看变量的值。 图9 Debug模式 使用debug方式调试代码的前提是本地的代码和云端的代码是完全一致的,如果不一致可能会导致在本地打断点的行和实际运行时该行的代码并不一样,会出现意想不到的错误。 因此在配置云上Python Interp
自定义镜像的API接口功能,无误后将自定义镜像上传至SWR服务。 将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型。 将模型部署为在线服务:将导入的模型部署上线。 本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的ECS或者
如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练(ModelLink)
I http://<节点IP>:<端口号>/metrics获取ModelArts采集到的指标数据。 开通前需要确认使用的端口号,端口号可选取10120~10139范围内的任一端口号,请确认选取的端口号在各个节点上都没有被其他应用占用。 Kubernetes下Prometheus对接ModelArts
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是
如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练(ModelLink)