检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。 密钥对 弹性裸金属支持SSH密钥对的方式进行登录,用户无需输入密码就可以登录到弹性裸金属服务器,因此可以防止由于密码被拦截、破解造成的账户密码泄露,从而提高弹性裸金属服务器的安全性。 说明:
ication.py” ,此处的“demo-code”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 资源池:选择专属资源池。 类型:选择驱动/固件版本匹配的专属资源池Ascend规格。 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://te
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
Gallery的AI说模块为开发者提供自由分享各类AI领域内知识和经验的平台。开发者既可以发布个人技术文章,也可以阅读和学习他人分享的技术文章。 案例库介绍 AI Gallery的案例库是面向场景化交付的AI资产的组合和使用案例。案例中沉淀了基于业务场景的AI知识、经验和部分通用的业务逻
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习率。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。 模型结构
在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1
efillTokens谁先达到各自的取值就完成本次组batch。 maxSeqLen:输入长度+输出长度的最大值。该值为maxInputTokenLen+maxIterTimes的和。config.json文件中默认是16k,用户可以根据自己的推理场景设置。 maxInputTo
创建模型时,如果是从OBS中导入元模型,则需要符合一定的模型包规范。 模型包规范适用于单模型场景,如果是多模型场景(例如含有多个模型文件)推荐使用自定义镜像方式。 ModelArts推理平台不支持的AI引擎,推荐使用自定义镜像方式。 请参考创建模型的自定义镜像规范和从0-1制作自定义镜像并创建模型,制作自定义镜像。
用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MRS服务下查看自己账号下可用的MRS集群,如果没有,则需要创建,当前需要集群有Spark组件,安装时,注意勾选上。 您可
甚至会有服务业务中断的风险,预测请求时延超过60s时,建议制作异步请求模式的模型。 自定义镜像的配置规范 镜像对外接口 设置镜像的对外服务接口,推理接口需与config.json文件中apis定义的url一致,当镜像启动时可以直接访问。下面是mnist镜像的访问示例,该镜像内含m
供轻量级的虚拟化,以便隔离进程和资源。尽管容器技术已经出现很久,却是随着Docker的出现而变得广为人知。Docker是第一个使容器能在不同机器之间移植的系统。它不仅简化了打包应用的流程,也简化了打包应用的库和依赖,甚至整个操作系统的文件系统能被打包成一个简单的可移植的包,这个包
如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练。 llama2-7b
通过nvidia-smi -a查询到存在Pending Page Blacklist为Yes的记录,或多比特Register File大于0。对于Ampere架构的GPU,存在以下场景: 存在不可纠正的SRAM错误。 存在Remapping Failure记录。 dmsg中存在Xid 95事件。
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle
--model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-paralle