检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
带一般过滤条件环路检测(filtered circle detection) 概述 带一般过滤条件环路检测(filtered circle detection)目的是寻找图中所有满足过滤条件的环路。 适用场景 带一般过滤条件的环路检测(filtered circle detect
图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 如果点被删除了,基于该点的边会自动删除。 父主题:
带一般过滤条件最短路径(Filtered Shortest Path) 概述 带一般过滤条件最短路径算法(Filtered Shortest Path)寻找两点间满足过滤条件的最短路径,如有多条,返回任意一条最短路径。 适用场景 带一般过滤条件的最短路径算法(Filtered Shortest
graph_id String 备份关联的图ID。 graph_name String 备份关联的图Name。 graph_status String 备份关联的图状态。 graph_size_type_index String 备份关联的图规格。 data_store_version
String 备份关联的图ID。 graph_name String 备份关联的图Name。 graphStatus String 备份关联的图状态。 graphSizeTypeIndex String 备份关联的图规格。 dataStoreVersion String 备份关联的图版本。 arch
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归地计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可
互联网应用 在移动互联网时代,面对庞大的社交关系,媒体传播网络,GES可以帮助客户快速、有效的发现海量数据中隐含的信息。 该场景能帮助您实现以下功能。 推荐好友、商品或资讯 通过好友关系、用户画像、行为相似性、商品相似性、资讯传播的途径等,实现好友、商品或资讯的个性化推荐。 用户分群 通过
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
图实例创建完成后,您可以通过连接管理功能下载相应的SDK和驱动,以及查看图实例的连接信息。 在图引擎管理控制台,左侧导航栏选择“连接管理”,进入连接管理页面。 图1 连接管理 下载SDK和驱动 图2 SDK和驱动 您可以选择集群支持的CPU架构,单击“下载”按钮进行SDK的下载。 下载SDK和驱动:
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归地计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可
} ] } 添加边时的平行边处理策略: 通过cypher添加边的时候,允许添加重复边,此处的重复边的定义为<源点,终点>相同的两条边。 添加无label的边的方法: 通过Cypher添加边时必须指定label,所以指定待添加边的label为默认值”__DEFAULT__”即可,例如create
} ] } 添加边时的平行边处理策略: 通过cypher添加边的时候,允许添加重复边,此处的重复边的定义为<源点,终点>相同的两条边。 添加无label的边的方法: 通过Cypher添加边时必须指定label,所以指定待添加边的label为默认值”__DEFAULT__”即可,例如create
判断左值(标签、id、属性值)是否在右值(必须是array类型)中,和内存版的左值和右值是否有交集的语义有区别。 不支持CONTAIN、NOTCONTAIN、SUBSET等集合运算。 匹配:右值是左值的PREFIX(前缀)、NOTPREFIX(非前缀)、 SUFFIX(后缀)、N
restricted(2.2.13) 否 是否带其他约束 Boolean true或false。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。
restricted(2.2.13) 否 是否带其他约束 Boolean true或false。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。
点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析。 参数说明 表1 All Shortest Paths of Vertex Sets参数说明
是否考虑边的方向 Bool true或false false timeWindow 否 用于进行时间过滤的时间窗 Json 具体请参见表2。 - 表2 timeWindow参数说明 参数 是否必选 说明 类型 取值范围 默认值 filterName 否 用于进行时间过滤的时间属性名称
约束条件 元数据的数据类型如表1和表2所示。 表1 元数据属性约束条件 数据类型 约束条件 char 小于‘<’ 大于‘>’ 等于‘=’ 不等于‘!=’ 在范围‘range’ 大于或等于‘>=’ 小于或等于‘<=’ char array 小于‘<’ 大于‘>’ 等于‘=’ 不等于‘!=’
k核算法(k-core) k跳算法(k-hop) 最短路径算法(Shortest Path) 全最短路算法(All Shortest Paths) 带一般过滤条件最短路径(Filtered Shortest Path) 单源最短路算法(SSSP) 点集最短路(Shortest Path of
el旁的第二个“”按钮,可在画布中隐藏当前label。 图5 隐藏label 隐藏当前选择的label的点和边 在绘图区,单击图中任意一个点,被选中的点会显示为。 表示label隐藏。在图数据中默认是全部展示的,单击label旁的“眼睛”按钮,可隐藏当前选择的label的点和边(即在画布中不展示)。