检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如
模型通常能够生成质量较高的数据。示例如下: 大模型输入: 你是一名短视频的知名带货博主,你的日常工作在短视频平台上进行各类产品的带货直播。你很擅长根据一段简要的产品介绍,创作出高质量的带货口播。 请根据如下产品介绍,生成一篇字数不超过200个字的高质量带货口播,产品介绍如下: ```
训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下: 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。 顺序:表格中的行通常按照特定顺序排列。
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
本节介绍盘古大模型服务在使用过程中的约束和限制。 规格限制 盘古大模型服务的规格限制详见表1。 表1 规格限制 资产、资源类型 规格 说明 模型资产、数据资源、训练资源、推理资源 所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。
"target":"当然可以,基于你的兴趣,我推荐你阅读《自动驾驶的未来》。"}] 单个文件大小不超过50GB,文件数量最多1000个。 问答排序 jsonl、csv jsonl格式:context表示问题,targets答案1、2、3表示答案的优劣顺序,最好的答案排在最前面。 { "context":"context内容"
间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMSE 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。
数据源样本为avi、mp4格式,标注文件为json格式。必须包含两个及以上后缀名字为avi或者mp4的文件。 每个视频时长要大于128s,FPS>=10,且测试集训练集都要有视频。 支持视频的格式包括常见的mp4/avi格式文件,每个视频时长要大于128s,FPS>=10,用annotation
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权平均后得到的值,权重是每个类别
拟合度 拟合度是一种衡量模型对数据拟合程度的指标。数值范围为0到1,数值越接近1,表示模型对数据的拟合程度越好。 均方根误差 均方根误差是预测值与真实值之间差异的平方和的均值的平方根。它用于衡量模型预测值与实际值之间的偏差,数值越小,表明模型预测的精度越高。 平均绝对误差 平均绝对误差
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale
用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 使用AppCode认证方式的请求Header参数见表2。
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单
提示词工程 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图3 横向比对提示词效果 父主题:
Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 >
深感敬佩。在宋朝的生活中,李晓也遇到了许多困难。他必须适应新的食物,新的气候,甚至新的疾病。但是,他从未放弃,他始终坚信,只要他坚持下去,他就能适应这个新的世界。在宋朝的生活中,李晓也找到了新的目标。他开始学习宋朝的书法,尝试理解这个时代的艺术。他还开始学习宋朝的医学,尝试理解这
在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。
批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。