检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
设置背景及人设 背景: 模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或
盘古大模型是否可以自定义人设 大模型支持设置人设,在用户调用文本对话(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。 以下示例要求模型以幼儿园老师的风格回答问题: { "messages": [
在左侧导航栏中选择“Agent开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 图1 提示词工程 在提示词撰写区域,单击“设为候选”,将当前撰写的提示词设置为候选提示词。 候选状态的提示词将保存至左侧导航栏的“候选”中。 图2 设为候选 父主题:
左侧导航栏中,选择“用户组”页签,单击右上方的“创建用户组”。 图1 创建用户组 在“创建用户组”页面,输入“用户组名称”,单击“确定”,创建用户组。 返回用户组列表,单击操作列的“授权”。 图2 用户组授权 参考表1,在搜索框中搜索授权项,为用户组设置权限,选择后单击“下一步”。 表1 授权项 授权项 说明
采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、简介等结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”,将回答设置为符合要求的段落。 续写
同一个提示词工程中,定义的变量不能超过20个。 在“模型”区域,单击“设置”,设置提示词输入的模型和模型参数。 图4 模型设置 父主题: 撰写提示词
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“插件”页签,单击右上角“创建插件”。 在“创建插件”页面,填写插件名称与插件描述,单击图片可上传插件图标,单击“下一步”。 在“配置信息”页面,参照表1完成信息配置。
清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个
负责软件开发的人员,您希望他们拥有接口的调用权限,但是不希望他们拥有训练模型或者访问训练数据的权限,那么您可以先创建一个IAM用户,并设置该用户在盘古平台中的角色,控制对资源的使用范围。 IAM权限 默认情况下,管理员创建的IAM用户(子用户)没有任何权限,需要将其加入用户组,并
属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。
训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而
能安防、安全隐私。 人工智能助手在智能家居、智能安防及安全隐私中的应用与优势 随着科技的飞速发展,人工智能(AI)助手已经成为了我们日常生活中不可或缺的一部分。尤其是在智能家居领域,AI助手正以惊人的速度改变着我们的生活方式。本文将探讨AI助手在智能家居、智能安防以及安全隐私保护方面的应用及其独特优势。
于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据
创建NLP大模型预训练任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击右上角“创建训练任务”。 在“创建训练任务”页面,参考表1完成训练参数设置。 表1 NLP大模型预训练参数说明 参数分类 训练参数 参数说明
Non-Authoritative Information 非授权信息,请求成功。 204 No Content 请求完全成功,同时HTTP响应不包含响应体。 在响应OPTIONS方法的HTTP请求时返回此状态码。 205 Reset Content 重置内容,服务器处理成功。 206 Partial Content
行加工。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的“训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个
模型调优方法介绍 调优目标:提升模型精度和性能。 调优思路:模型调优总体可分为两方面,数据预处理和模型训练参数优化,优化思路是从最简单的情形出发,逐步迭代调整提升模型效果,通过实验发现和确认合适的数据量,以及最佳的模型结构和模型参数。 父主题: 盘古科学计算大模型调优实践
模型调优方法介绍 在实际应用中,首次微调所得的模型往往无法取得最佳效果,为了让模型能更好地解决特定场景任务,通常需要根据微调所得模型的效果情况来进行几轮的模型微调优化迭代。 在大模型的微调效果调优过程中,训练数据优化、训练超参数优化、提示词优化以及推理参数优化是最重要的几个步骤。