检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户尝试收集大量数据到Driver端,如果Driver端的内存不足以存放这些数据,那么就会抛出OOM(OutOfMemory)的异常,然后Driver端一直在进行GC,尝试回收垃圾来存放返回的数据,导致应用长时间挂起。 解决措施: 如果用户需要在OOM场景下强制将应用退出,那么可以在启动Spark
配置Hive分区元数据冷热存储 分区元数据冷热存储介绍 为了减轻集群元数据库压力,将长时间未使用过的指定范围的分区相关元数据移动到备份表,这一过程称为分区数据冻结,冻结的分区数据称为冷分区,未冻结的分区称为热分区,存在冷分区的表称为冻结表。将被冻结的数据重新移回原元数据表中,这一过程称为分区数据解冻。
扩展使用 配置Hive中间过程的数据加密 指定表的格式为RCFile(推荐使用)或SequenceFile,加密算法为ARC4Codec。SequenceFile是Hadoop特有的文件格式,RCFile是Hive优化的文件格式。RCFile优化了列存储,在对大表进行查询时,综合性能表现比SequenceFile更优。
读取Phoenix表数据 功能简介 使用Phoenix实现读数据。 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“PhoenixSample”类的testSelect方法中。 /** * Select Data */
如果观察到个别节点占用资源较高,需要针对占用资源较高的节点分析,分析当前的SQL语句是什么原因导致部分节点占用比其他节点更多资源,是计算还是数据存储倾斜导致,或者是软件bug导致。 每个节点资源占用都比较高 如果集群所有节点资源占用都比较高,说明集群整体比较忙,需要单独确认需要调优的SQL语句,单独调优。如
用户尝试收集大量数据到Driver端,如果Driver端的内存不足以存放这些数据,那么就会抛出OOM(OutOfMemory)的异常,然后Driver端一直在进行GC,尝试回收垃圾来存放返回的数据,导致应用长时间挂起。 解决措施: 如果用户需要在OOM场景下强制将应用退出,那么可以在启动Spark
使用KafkaStreams统计数据 功能简介 以下提供High level KafkaStreams API代码样例及Low level KafkaStreams API代码样例,通过Kafka Streams读取输入Topic中的消息,统计每条消息中的单词个数,从输出Topic消费数据,将统计结果
并行度控制任务的数量,影响操作后数据被切分成的块数。调整并行度让任务的数量和每个任务处理的数据与机器的处理能力达到最优。 查看CPU使用情况和内存占用情况,当任务和数据不是平均分布在各节点,而是集中在个别节点时,可以增大并行度使任务和数据更均匀的分布在各个节点。增加任务的并行度,充分利用集群机器的计算能力。
行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client HDFS Client主要包括五种方式:JAVA API、C
行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client HDFS Client主要包括五种方式:JAVA API、C
要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client HDFS Client主要包括五种方式:JAVA API、C
用户尝试收集大量数据到Driver端,如果Driver端的内存不足以存放这些数据,那么就会抛出OOM(OutOfMemory)的异常,然后Driver端一直在进行GC,尝试回收垃圾来存放返回的数据,导致应用长时间挂起。 解决措施: 如果用户需要在OOM场景下强制将应用退出,那么可以在启动Spark
扩展使用 配置Hive中间过程的数据加密 指定表的格式为RCFile(推荐使用)或SequenceFile,加密算法为ARC4Codec。SequenceFile是Hadoop特有的文件格式,RCFile是Hive优化的文件格式。RCFile优化了列存储,在对大表进行查询时,综合性能表现比SequenceFile更优。
Storm应用开发常用概念 Topology 拓扑是一个计算流图。其中每个节点包含处理逻辑,而节点间的连线则表明了节点间的数据是如何流动的。 Spout 在一个Topology中产生源数据流的组件。通常情况下Spout会从外部数据源中读取数据,然后转换为Topology内部的源数据。
户自定义函数。 在启用了安全服务的集群中执行如下操作,需要对涉及的表具有与操作对应的权限。详情请参见Hive应用开发概述。 样例代码 -- 查看薪水支付币种为美元的雇员联系方式. SELECT a.name, b.tel_phone, b.email FROM employees_info
删除HBase表数据 功能简介 HBase通过Table实例的delete方法来Delete数据,可以是一行数据也可以是数据集。 代码样例 以下代码片段在com.huawei.bigdata.hbase.examples包的“HBaseSample”类的testDelete方法中。
MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个服务器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicatio
使用Scan读取HBase数据 功能简介 要从表中读取数据,首先需要实例化该表对应的Table实例,然后创建一个Scan对象,并针对查询条件设置Scan对象的参数值,为了提高查询效率,最好指定StartRow和StopRow。查询结果的多行数据保存在ResultScanner对象中,每行数据以Res
在业务规划时,不同业务归属于不同数据库,便于后续对应用户关联的数据库下表、视图等数据库对象权限的分离管理和维护。 业务隔离设计-不要在system库中创建业务表 system数据库是ClickHouse默认的系统数据库,默认数据库中的系统表记录的是系统的配置、元数据等的信息数据。 业务在使用Cl
快速开发HDFS应用 HDFS(Hadoop Distribute FileSystem)是一个适合运行在通用硬件之上,具备高度容错特性,支持高吞吐量数据访问的分布式文件系统,非常适合大规模数据集应用。 HDFS适用于如下场景: 处理海量数据(TB或PB级别以上) 需要很高的吞吐量 需要高可靠性