检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
实时数据能否立即应用到推荐场景? 需要确认关联的召回策略,近线召回可以,离线召回不可以。离线召回需要重新执行。 父主题: 数据源
数据质量 数据质量检测算子,是用户在进行离线计算之前使用原始初始格式数据(离线数据源中的离线数据)或者通用格式数据检测输入数据是否合法。包括离线数据中是否包含特殊字符,数据类型是否正确,是否缺少必备信息等。 前提条件 已将离线数据上传至OBS桶中。 创建数据质量作业 创建数据质量操作步骤如下:
供当前账号创建的DLI集群、CloudTable开启IAM认证的集群和DIS通道供用户选择进行绑定或解绑。 背景信息 绑定资源之后,将该资源应用于RES的作业训练及在线作业获取推荐结果。 解绑资源完成资源释放,已经解绑的资源不再应用于RES的相关计算。 已开通计算引擎DLI、存储
RES电商推荐 RES+媒资应用场景 场景描述 媒资推荐场景中,通常对实时性要求比较高,用户产生的行为需要得到即时的反馈,同时结合用户的长期兴趣和短期兴趣进行个性化推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。
数据质量管理 数据结构 数据导入 数据探索 父主题: 数据源管理
关联推荐的主要应用场景是什么? 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 父主题: 智能场景
据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表”和用于近线计算的“物品画像”数据。物品数据记录物品的属性信息,例如类别、长度等。
热门推荐的主要应用场景是什么? 热门推荐只要适用于首页、热点类场景,满足流行度统计,有效吸引新用户。 父主题: 智能场景
猜你喜欢的主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景
数据探索是什么?近线实时数据如何在数据探索中的报告体现? 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据
数据结构 当数据源创建完成,您可以进入数据源详情页面进行数据质量管理操作。数据质量管理操作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中
创建数据源 功能介绍 在指定的工作空间下面创建一个新的数据源。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/data-sources 表1 路径参数 参数 是否必选
导入近线数据源 通过导入近线数据源,达到实时计算并更新用户画像、物品画像,实时更新增量数据的目的。 前提条件 按数据规范准备数据并上传至通道。具体上传方法请参见上传实时数据。 导入近线数据源 登录RES管理控制台,在左侧菜单栏中选择“数据源”,进入“数据源”列表页面。 在数据源列表
是 JSON 算法参数,每一种算法都有其特定的参数。 DATA_QUALITY_INSPECTION,请参见表7。 data_source 是 List 算法数据源配置 DATA_QUALITY_INSPECTION,数据源选择通用模板数据,请参见表5。 offline_platform
建桶。如果已存在可用的桶,需确保OBS桶与RES在同一区域。 将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。 数据上传成功后,在OBS管理控制台页面单击进入创建的桶,选择“对象”查看上传的数据。 父主题: 数据源管理
创建离线数据源 在使用RES之前,首先您需要创建一个数据源,后续的操作,如修改数据源、创建自定义推荐,都是基于您创建的数据源进行的。 前提条件 已创建用于存储数据的OBS桶及文件夹,并且数据存储的OBS桶与RES在同一区域。 需要使用的数据已上传至OBS。 创建数据源 登录RES
用户报表:根据不同数据格式展示用户数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。 百分位数:将数据进行排序,统计该数据在整个数据中所占的百分比。 图2 百分位数 分布统计:通过查看分布统计了解各参数下参数值的分布情况。如可以根据性别展示数据中的性别数据分布。可通过
数据导入 数据导入介绍 数据导入即读取经过“数据结构”生成的数据,对每条数据进行校验。推荐系统保留字段需校验类型和数据合法性、自定义字段校验类型,输出错误报告。如果数据完全符合要求,会生成推荐系统所需要的宽表和画像数据。 宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据。
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
Nearline object 近线数据源。 表6 Offline 参数 是否必选 参数类型 描述 user_url 是 String 用户数据url。 item_url 是 String 物品数据url。 behavior_url 是 String 行为数据url。 表7 Nearline