检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
t-062102") .build()); // 检索 String query = "杜甫的诗代表了什么主义诗歌艺术的高峰?"; List<Document> docs = cssVector.similaritySearch(query, 4
基于已有的知识库进行摘要总结,包括stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型处理,适用于文档较少的场景。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs; import com.huaweicloud
多轮对话 支持上下文记忆的多轮对话。 初始化。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs; import com.huaweicloud.pangu.dev.sdk.api.skill.Skills; import com
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
多轮对话 支持上下文记忆的多轮对话。 初始化 from pangukitsappdev.skill.conversation_skill import ConversationSkill from pangukitsappdev.api.llms.factory import LLMs
AgentAction包含Agent的工具选择、工具执行结果、思考等信息,AgentSessionStatus为一个枚举,包含Agnet的执行状态。建议直接对Agent的run接口的返回进行修改,以控制Agent的行为。如果想控制中间过程,可以对Agent的runStep的返回进行修改。 通过监听终止Agent的执行
Agent效果优化 如果Agent出现无法正确调用工具的情况,可以尝试一些prompt优化技术提升效果。 优化System prompt 提示财务报销助手依赖的必要信息,如用户名称等基础信息: final String customSystemPrompt = "你是财务
Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev.callback
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预
一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent监听,允许对Agent的各个阶段进行处理
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为了帮助用户更好地管理和优化
SearchTool()); } 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过setMaxIterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-Def
toolId。表示工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 toolDesc。工具的描述,为重要参数,尽可能的准确简短描述工具的用途。 toolPrinciple。表示何时使用该工具,为重要参数。该描述直接影响LLM对工具使用的判断,尽量描述清楚。如
@Tool说明: name。工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 description。工具的描述,建议为中文,尽可能的简短描述工具。 principle。何时使用该工具,为重要参数,该描述直接影响LLM对工具使用的判断,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。
add_tool(SearchTool()) 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过set_max_iterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-Agent-L0
09:00的A01已预定成功 - 步骤3 答复:"已为您预定 A01会议室,时间为2024年5月8日早上8点到9点。 " 多轮执行增强 上述的例子中实际运行时只提供给模型多轮的对话,并没有提供工具执行的过程,有概率会出现模型不实际调用工具的情况。为了让大模型的效果更好,可以传入agentSession。
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<LLMResp>
面试问题生成 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 写作示例
报错原因:模型训练过程中,训练日志出现“no such file or directory”报错,表示当前数据集格式、数据命名、数据存储路径不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 请检查数据集路径是否设置正确。 图2 no such file or directory报错 The