检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
管理ModelArts模型 查看ModelArts模型详情 查看ModelArts模型事件 管理ModelArts模型版本 发布ModelArts模型 父主题: 使用ModelArts Standard部署模型并推理预测
创建模型 创建模型不同方式的场景介绍 从训练作业中导入模型文件创建模型 从OBS中导入模型文件创建模型 从容器镜像中导入模型文件创建模型 从AI Gallery订阅模型 父主题: 使用ModelArts Standard部署模型并推理预测
管理Standard专属资源池 查看Standard专属资源池详情 扩缩容Standard专属资源池 升级Standard专属资源池驱动 修复Standard专属资源池故障节点 修改Standard专属资源池支持的作业类型 迁移Standard专属资源池和网络至其他工作空间 配置Standard专属资源池可访问公网
通过智能标注方式标注数据 创建智能标注作业 确认智能标注作业的数据难例 使用自动分组智能标注作业 父主题: 标注ModelArts数据集中的数据
导入数据到ModelArts数据集 数据导入方式介绍 从OBS导入数据到ModelArts数据集 从DWS导入数据到ModelArts数据集 从DLI导入数据到ModelArts数据集 从MRS导入数据到ModelArts数据集 从本地上传数据到ModelArts数据集 父主题:
创建调试训练作业 使用PyCharm ToolKit创建并调试训练作业 使用VS Code创建并调试训练作业 父主题: 使用ModelArts Standard训练模型
通过PyCharm远程使用Notebook实例 使用PyCharm Toolkit插件连接Notebook 使用PyCharm手动连接Notebook 使用PyCharm上传数据至Notebook 父主题: 使用Notebook进行AI开发调试
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
ModelArts支持的预置镜像列表 ModelArts预置镜像更新说明 ModelArts统一镜像列表 Notebook专属预置镜像列表 训练专属预置镜像列表 推理专属预置镜像列表 父主题: 制作自定义镜像用于ModelArts Standard
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
配置ModelArts Standard访问授权 快速配置ModelArts委托授权 创建IAM用户并授权使用ModelArts 父主题: ModelArts Standard准备工作
安装配置Grafana 在Windows上安装配置Grafana 在Linux上安装配置Grafana 在Notebook上安装配置Grafana 父主题: 使用Grafana查看AOM中的监控指标
ModelArts Standard资源管理 Standard资源池功能介绍 创建Standard专属资源池 管理Standard专属资源池
监控Lite Cluster资源 使用AOM查看Lite Cluster监控指标 使用Prometheus查看Lite Cluster监控指标 父主题: Lite Cluster资源管理
Lite Cluster资源配置 Lite Cluster资源配置流程 配置Lite Cluster网络 配置kubectl工具 配置Lite Cluster存储 (可选)配置驱动 (可选)配置镜像预热
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务