检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
菜单栏中选择“模型部署>在线服务”,进入在线服务管理页面。 单击在线服务列表“操作”列的“更多>删除”删除服务。 勾选在线服务列表中的服务,然后单击列表左上角“删除”按钮,批量删除服务。 单击目标服务名称,进入服务详情页面,单击右上角“删除”删除服务。 删除操作无法恢复,请谨慎操作。
产品发布说明 昇腾云服务6.3.911版本说明 昇腾云服务6.3.910版本说明(推荐) 昇腾云服务6.3.909版本说明 昇腾云服务6.3.908版本说明 昇腾云服务6.3.907版本说明 昇腾云服务6.3.906版本说明 昇腾云服务6.3.905版本说明 昇腾云服务6.3.904版本说明
会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考使用AWQ量化或使用SmoothQuant量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)
专属资源池下的在线服务停止后,启动新的在线服务,提示资源不足 停止在线服务后,需要等待几分钟等待资源释放。 父主题: Standard资源池
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
推理请求经过一系列传递后最终是会进入到模型服务中,模型服务可能是以自定义镜像的方式导入的,可能是因为模型服务在处理推理请求时候出现了问题导致结果不符合预期,能准确判断出来是否是在模型服务中出的问题对于快速解决问题帮助很大。 处理方法 不管是用方式1还是方式2,要判断是否是模型服务返回的不合预期的结果都
更新AI应用版本时,边缘服务预测功能不可用? 针对某一部署的边缘服务,如果在更新AI应用版本时,即修改边缘服务,更新其使用的AI应用版本,导致此边缘服务的预测功能暂不可用。 针对此场景,由于更新了AI应用版本,边缘服务将重新部署,处于部署中的边缘服务,则无法使用预测功能。即更新A
Arts服务和模型告警规则的具体方法。 只有“运行中”的在线服务,支持对接CES监控。 前提条件: 已创建ModelArts在线服务。 已在云监控服务创建ModelArts监控服务。登录“云监控服务”控制台,在“自定义监控”页面,根据界面提示创建ModelArts监控服务。 设置
与其他云服务的关系 图1 ModelArts与其他服务的关系示意图 与统一身份认证服务的关系 ModelArts使用统一身份认证服务(Identity and Access Management,简称IAM)实现认证功能。IAM的更多信息请参见《统一身份认证服务产品文档》。 与对象存储服务的关系
网络调整公告 ModelArts针对网络进行安全加固和优化,新的网络模式可以为用户的资源提供更好的隔离性,提升云上资源的安全。为保障您的网络安全,建议您后续使用新网络创建Standard资源池。 表1 上线局点 上线局点 上线时间 华东二 2024年10月29日 20:00 父主题:
在线服务鉴权 功能介绍 计费工作流在线服务鉴权。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workflows/service/auth
完成资源配置后,单击“继续运行”,在弹框中确认继续运行后,服务部署节点将继续运行,直至状态变为“运行成功”,至此,已将模型部署为在线服务。 服务测试 服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习预测
使用边缘节点部署边缘服务能否使用http接口协议? 系统默认使用https。如果您想使用http,可以采取以下两种方式: 方式一:在部署边缘服务时添加如下环境变量: MODELARTS_SSL_ENABLED = false 图1 添加环境变量 方式二:在使用自定义镜像导入模型时
torch.save(test_set, f) print('Done!') def main(): # 定义可以接收的训练作业运行参数 parser = argparse.ArgumentParser(description='PyTorch MNIST
管理ModelArts服务的委托授权 本节通过调用一系列API,以管理ModelArts服务的委托授权为例介绍ModelArts API的使用流程。 概述 管理ModelArts服务的委托授权流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。
根据提示完成身份验证,下载密钥,并妥善保管。 获取在线服务信息 在调用接口时,需获取在线服务的调用地址,以及在线服务的输入参数信息。步骤如下: 登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 在线服务”,默认进入“在线服务”列表。 单击目标服务名称,进入服务详情页面。 在“在线服务”的详情页面,可以获取该服务的调用地址和输入参数信息。
请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述 total_count