检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模式要求用户将标注对象和标注文件存储在同一目录,并且一一对应,如标注对象文件名为“IMG_20180919_114745
Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
创建声音分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
当前需手工处理,增加运维成本问题。 支持节点新进入集群,默认启用准入检测,以能够拉起真实的GPU/NPU检测任务 支持集群扩容时,扩容的节点默认开启准入检测,该准入检测也可关闭,以提升拉起真实的GPU/NPU检测任务成功率。 父主题: 功能介绍
数据标注 物体检测图片标注,一张图片是否可以添加多个标签? 在物体检测作业中上传已标注图片后,为什么部分图片显示未标注? 父主题: Standard自动学习
Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,通过采集和对比标杆(GPU/CPU)环境和昇腾环境上运行训练时的差异点来判断问题所在。整体流程如下图所示,更多介绍请参考昇腾精度调试指南。 图1 精度调优流程 溢出检测和Dump比对是通过在PyTorch模型中注入
只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。 只有发布后的数据集支持数据特征分析。发布后的Default格式数据集版本支持数据特征分析。 数据特征分析的数据范围,不同类型的数据集,选取范围不同: 对于标注任务类型为“物体检测”的数据集版本,当已标注样
模型训练、模型评估等场景。主要应用场景如下: 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。 对于一些物体检测,图像分类等模型场景,可以根据已有的数据使用该节点进行模型的训练。 属性总览 您可以使用JobStep来构建作业类型节点,JobStep结构如下
练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。 为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤 登录
层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程中精
的数据集可直接在ModelArts控制台数据集列表中显示。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
训练作业日志中提示“No such file or directory” 问题现象 训练作业运行失败,日志中提示“No such file or directory”。 例如:找不到训练输入的数据路径时,会提示“No such file or directory”。 例如:找不到训练启动文件时,也会提示“No
添加图片时,图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
在标注作业列表中,选择“物体检测”或“图像分类”类型的标注作业,单击标注作业名称进入“标注作业详情”。 在“标注作业详情页”,选择“待确认”页签,查看并确认难例。 只有当智能标注任务完成后,待确认页签才会显示标注数据。否则,此页签内容为空。智能标注操作请参见创建智能标注作业。 针对“物体检测”标注作业
目前只有“图像分类”和“物体检测”类型的数据集支持智能标注功能。 团队标注 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文
代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。 针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管理中
代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。