检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深感敬佩。在宋
典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优
参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。 父主题: 典型训练问题和优化策略
了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 典型训练问题和优化策略
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题: 典型训练问题和优化策略
失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加强对建设过程的监管和评估,节约
命令案例:科技行业公司的平均利润和市值是多少 通过调用大模型,获取更多数据: 1. "请给我科技行业公司的利润平均值和市值平均值。" 2. "科技行业的公司平均利润和市值都是多少?" 3. "我需要知道科技行业公司的平均利润和平均市值。" 4. "能告诉我一下科技行业公司的平均利润和市值是多少吗?"
生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让李晓对她产生了深深的喜爱。他还遇到了一位名叫王安石的大儒,他的智慧和博学让李晓深感敬佩。在宋
创建自监督微调训练任务 有监督训练 使用含有标记的数据进行模型训练,以学习输入和输出之间的映射关系。 创建有监督训练任务 模型评估 创建模型评估任务 训练完成后评估模型的回答效果。 创建模型评估任务 查看模型评估结果 查看模型评估指标和评估结果。 查看评估任务详情 模型压缩 - 通过模型压缩技
的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。 除了短视频风格的口播文案,营销文案还
数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好 这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格
文档问答 基于已有的知识库进行回答。有stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import Embeddings
文档问答 基于已有的知识库进行回答,包括stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适用于文档较少的场景。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs;
文档摘要 基于已有的知识库进行摘要总结,包括stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型处理,适用于文档较少的场景。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs;
提示工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户
例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在构造泛化问题的任务中,需
创建知识库 选择知识库类型后,单击“创建”进入知识库设置页面,创建知识库。 当选择“自定义知识库”时,需要设置名称、英文名称、描述信息。注意英文名称和描述将影响模型检索效果,不可随意填写,需按照知识库中文档的实际内容或知识库目进行填写。设置完成后单击“立即创建”进入知识库详情页,上传文档。
03 入门 体验盘古大模型的预置模型功能和应用百宝箱功能,您将快速熟悉平台的核心能力,探索多种应用场景,从而更好地发挥盘古大模型在实际业务中的价值。 功能体验 体验盘古预置模型能力 体验盘古驱动的应用百宝箱 05 实践 通过基模型训练出行业大模型和提示词写作的最佳实践,您将深入掌握行