内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    964
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2443
    1
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    819
    2
  • 《MXNet深度学习实战》—1.1.3 深度学习

    1.1.3 深度学习在介绍深度学习之前首先需要了解下神经网络,神经网络是机器学习算法中的一个重要分支,通过叠加网络层模拟人类大脑对输入信号的特征提取,根据标签损失函数的不同,既可以做分类任务,又可以做回归任务。我们知道在机器学习的大部分算法中,特征提取一般都是手动构造的,这部分

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 七十九、深度广度优先搜索算法

    编程的本质来源于算法,而算法的本质来源于数学,编程只不过将数学题进行代码化。 ---- Runsen 深度优先搜索广度优先搜索作为应用广泛的搜索算法,一般是必考算法。 深度优先算法(DFS) 深度优先算法的本质是回溯算法,多数是应用在树上,一个比较典型的应用就是二叉树的中序遍历。 DFS的实现考虑要以下几个问题即可:

    作者: 毛利
    发表时间: 2021-07-14 20:00:01
    1347
    0
  • 深度学习识别滑动验证码

    本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0
  • 深度学习深度学习界以外的微分

    深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse

    作者: 小强鼓掌
    438
    0
  • 机器学习深度学习

    业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该

    作者: QGS
    678
    2
  • 深度学习机器学习的区别

    )领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)深度置信网(Deep

    作者: 运气男孩
    685
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    348
    1
  • 浅谈深度学习

    深度学习技术也存在一些挑战和问题。例如,深度学习模型的训练需要大量的数据计算资源,而且通常需要大量的时间人力来完成。此外,深度学习模型的精度稳定性也需要更多的研究改进。总结总之,深度学习技术是一种非常重要和有影响力的机器学习技术。它已经在多个领域取得了巨大的成功,并已经

    作者: 运气男孩
    24
    3
  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    731
    1
  • 深度学习前景

    为众所周知的“深度学习’’。这个领域已经更换了很多名称,它反映了不同的研究人员不同观点的影响。全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控

    作者: G-washington
    1665
    1
  • 什么是深度学习

    深度学习是使用多层结构从原始数据中自动学习并提取高层次特征的一类机器学习算法。通常,从原始数据中提取高层次、抽象的特征是非常困难的。深度学习将原始的数据表示成一个嵌套的特征层级,这样一来,每层特征均可以由更简单的特征来定义计算。尤为重要的是,深度学习可以自动地学习如何最优地将不

    作者: 角动量
    1546
    5
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 浅谈深度学习

    首先要明白什么是深度学习深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络

    作者: 运气男孩
    1268
    3