内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    731
    1
  • 深度学习应用开发学习

    破——国际跳棋、国际象棋围棋。这些历史事件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习强化学习等概念。特别是强化学习,它通过奖励惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它

    作者: 黄生
    22
    0
  • 业务知识

    业务知识学习看看,笔记内容

    作者: yd_245637169
    16
    0
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 适合新手的深度学习综述(4)--深度学习方法

    简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型的下一步。这主要用于游戏机器人,解决平常的决策问题。Schmidthuber(2014) 描述了强化学习 (RL) 中深度学习的进展,以及深度前馈神经网络 (FNN) 循环神经网络

    作者: @Wu
    177
    1
  • 深度学习深度前馈网络

           深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数

    作者: 小强鼓掌
    1257
    4
  • 深度学习学习纯优化有什么不同

    时所预测的输出,pˆdata 是经验分布。监督学习中,y 是目标输出。在本章中,我们会介绍不带正则化的监督学习,L的变量是 f(x; θ) y。不难将这种监督学习扩展成其他形式,如包括 θ 或者 x 作为参数,或是去掉参数 y,以发展不同形式的正则化或是无监督学习

    作者: 小强鼓掌
    346
    1
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据监督学习的设定下:关键假设仍然是概率质量高度集中。

    作者: 小强鼓掌
    1676
    3
  • 深度学习框架TensorFlow

    应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief   。Tensorflow拥有多层级结构,可部署于各类服务器、PC终端网页并支持GPUTPU高性能数值计算,被广泛应用于谷歌内部的产品开发各领域的科学研究

    作者: QGS
    555
    0
  • 深度优先” 、 “广度优先” 究竟哪个更常用

    前言在算法和数据结构中,深度优先搜索(DFS)广度优先搜索(BFS)是两个常用的遍历算法。它们在解决各种问题时都发挥着重要作用。但在实际开发中,深度优先广度优先哪个更常用?本文将探讨这个问题,并提供一些案例观点供读者参考。深度优先搜索深度优先搜索是一种递归的搜索算法,其主要

    作者: 林欣
    135
    2
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据监督学习的设定下:关键假设仍然是概率质量高度集中。

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据监督学习的设定下:关键假设仍然是概率质量高

    作者: 小强鼓掌
    813
    1
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1264
    13
  • 深度残差收缩网络:一种深度学习的故障诊断算法

    png【翻译】如第一部分所述,作为一种潜在的、能够从强噪声振动信号中学习判别性特征的方法,本研究考虑了深度学习软阈值化的集成。相对应地,本部分注重于开发深度残差网络的两个改进的变种,即通道间共享阈值的深度残差收缩网络、通道间不同阈值的深度残差收缩网络。对相关理论背景必要的想法进行了详细介绍。A. Basic

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0
  • 深度学习应用开发》学习笔记-12

    数据不是收集的,是自己生成的,好吧~一个简单的例子学习用的没关系%matplotlib inline这个是为了让在jupyter在浏览器里能够显示图像。生成y=2x+1的随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1

    作者: 黄生
    1024
    2
  • 深度学习=炼金术?

    深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用待解决的问题;可解释AI的研究方向进展。

    主讲人:华为MindSpore首席科学家,陈雷
    直播时间:2020/03/27 周五 14:00 - 15:00
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 走近深度学习 认识MoXing

    深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。

  • 深度学习应用开发》学习笔记-24

    水xxg,这里特征变量的值是有量级的差异的,比如水盐来说吧,水可以50g位为单位去加减来调整,但是盐不可以,如果盐以50g为单位去调整,那马上咸死,这道菜就废了,只能以1g为单位去调整。反过来,水量如果以1g去调整,那人都烦死了。而归一化后,水盐就处于同一个量级,不会发生上面的事情了。

    作者: 黄生
    615
    1