检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
简化或跳跃推理的可能性。 分步推理与反馈:通过分步推理,模型能够在每个步骤后检查和修正自己的思考过程。 例如,在给定一个复杂的逻辑推理问题时,可以要求模型每完成一小步推理,就提供中间结论和推理过程。这样,模型不仅能增加解题的准确性,还能增强理解和自我校正的能力。 通过在提示词中采
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
CV大模型训练流程与选择建议 CV大模型训练流程介绍 目前,CV大模型支持微调训练。 微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估
以满足不同场景下的用户需求。关于计费模式的详细介绍请参见计费模式。 包周期计费是一种预付费模式,即先付费再使用,按照订单的购买周期进行结算,因此在购买之前,您必须确保账户余额充足。 按需计费是一种后付费模式,即先使用再付费,按照实际使用时长计费。 在购买后,如果发现当前计费模式
根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
预测大模型训练流程与选择建议 预测大模型训练流程介绍 目前,预测大模型支持微调训练。 微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估
发布等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。 模型开发工具链:模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案,涵盖模型训练、压
务API,调用前需获取文本翻译服务的Token,获取Token步骤如下: 使用IAM账号进入API Explorer服务,在左上角选择“统一身份认证服务”,单击“Token管理 > 获取IAM用户Token(使用密码)”。 如图2,配置请求体参数。 图2 配置请求体参数 其中,d
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
"text": "故事标题:《穿越宋朝的奇妙之旅》在一个阴雨绵绵的夜晚,一个名叫李晓的年轻人正在阅读一本关于宋朝的历史书籍。突然,他感到一阵眩晕,当他再次睁开眼睛时,他发现自己身处一个完全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古代的服饰,用着他听不懂的语
在左侧导航栏中选择“空间资产 > 数据”。 单击右上角“订阅数据”,在“从AI Gallery订阅”页面选择需订阅的数据资产,单击“下一步”。 填写资产名称与资产描述后,单击“确定”实现数据资产的订阅。 数据资产列表页将显示订阅数据资产的状态: 如果状态为“订阅中”,表示该资产正从AI
的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模
单层级分类:单层级分类是最简单的一种标注方式,通常指对视频内容进行单一的标签分类。如图1,在视频中标注场景主题类别。每个视频片段只对应一个分类标签,分类项不再进一步细分或包含更多的层次结构。 图1 单层级分类示例-视频主题分类 多层级分类:多层级分类允许对同一视频内容进行更复杂的分类,
{"system":"你是一个机智幽默问答助手","context":"你好,请介绍自己","target":"哈哈,你好呀,我是你的聪明助手。"} csv格式:csv文件的第一列对应system,第二三列分别对应context、target。 "你是一个机智幽默问答助手","你好,请介绍自己"
"亲爱的小朋友们,你们好呀!今天我们要来聊一聊一条非常特别的大河——长江。长江是我们中国的一条非常长的河流,它从青藏高原出发,一直流到了上海,最后流入大海哦。长江好长好长,它是我们中国第一大河,也是世界上第三长的河流呢!长江不仅仅是一条河流,它还是很多鱼类的家园。在长江里,有一种鱼类是我们中国的特有
”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型
线”生产。 在城市政务“一网统管”的场景中,往往建设有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城
训练指标 指标说明 NLP大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小