检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。 父主题: 单机单卡
在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类 仅“华东二”和“西南-贵阳一”区域支持使用ModelArts Studio大模型即服务平台(MaaS)。 MaaS是白名单功能,如果有试用需求,请先申请权限。 应用场景 在数字化时代,新闻的生成与传播速度不断刷新记录。在ModelArts
在将音频与图片、音频与视频进行合成时,口型能够自然。 Wav2Lip模型的输入为任意的一段视频和一段语音,输出为一段唇音同步的视频。 Wav2Lip的网络模型总体上分成三块:生成器、判别器和一个预训练好的唇音同步判别模型Pre-trained Lip-sync Expert。 生
检查启动文件路径排查解决。 可能为多个进程或者worker读写同一个文件。如果使用了SFS,则考虑是否多个节点同时写同一个文件。分析代码中是否存在多进程写同一文件的情况。建议避免作业中存在多进程,多节点并发读写同一文件的情况。 检查报错的路径是否为OBS路径 使用ModelArt
参数名称 说明 创建方式 必选,选择“自定义算法”。 启动方式 必选,选择“自定义”。 镜像 必填,单击右边的“选择”,从容器镜像中选择上一步上传到SWR的镜像。 代码目录 选择训练代码文件所在的OBS目录。如果自定义镜像中不含训练代码则需要配置该参数,如果自定义镜像中已包含训练代码则不需要配置。
您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。 该方式的训练流程与直接基于预置框架创建的训练作业相同,例如: 系统会自动注入一系列环境变量,如下所示。 PATH
S路径时,必须以obs://作为路径前缀。 keep_last_dir 否 Boolean 默认为True,复制文件夹时是否将源文件夹最后一级目录复制至目的文件夹下,仅对文件夹复制有效。 表2 失败相应说明 参数 参数类型 描述 error_code String 调用失败时的错误码。调用成功时无此字段。
实例数 必填,根据需要选择实例数的个数。默认值为“1”。 当“实例数 = 1”时,创建的是单机训练作业,ModelArts只会在一个节点上启动一个训练容器,该训练容器独享所选规格的计算资源。 当“实例数 > 1”时,创建的是分布式训练作业,更多分布式训练配置请参见分布式训练功能介绍。
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
团队标注使用说明 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州、中国-香港、亚太-新加坡、亚太-曼谷。
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
先创建一个数据集,后续的操作如数据导入、数据分析、数据标注等,都是基于数据集来进行的。 数据集功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州、西南-贵阳一、中国-香港、亚太-新加坡、亚太-曼谷、亚太-雅加达、拉美-圣地亚哥、拉美-圣保罗一、拉美-墨西哥城二。
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
但是在生产环境或多人使用的公共服务器上,不建议设置TMOUT=0,关闭自动注销功能会带来一定的安全风险。 磁盘合并挂载。 成功购买裸金属服务器后,服务器上可能会有多个未挂载的nvme磁盘。因此在首次配置环境前,需要完成磁盘合并挂载。此操作需要放在最开始完成,避免使用一段时间后再挂载会冲掉用户已存储的内容。 首先通过“
创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式
per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface
请参见表3。多模态只支持hf上下载的awq权重,可跳过步骤一。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量
tion)和kvcache一般使用半精度浮点FP16或BF16。量化指将高比特的浮点转换为更低比特的数据类型的过程。例如int4、int8等。 模型量化分为weight-only量化,weight-activation量化和kvcache量化。 量化的一般步骤是:1、对浮点类型的
创建团队标注任务 如果您在创建标注作业时,即启用团队标注,且指派了某一团队负责标注,系统将默认基于此团队创建一个标注任务。您可以在创建数据标注任务后,在“我创建的”页面查看此任务。 您还可以重新创建一个团队标注任务,指派给同一团队的不同成员,或者指派给其他标注团队。 团队标注作业的创建方式