检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用Header或Query中的密钥参数(如Token)进行鉴权,适用于需要权限控制的场景,安全性较高。 API Key鉴权:通过唯一的API Key来认证应用之间的访问权限,可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥值,安全性较低。 请求头 插件
初始化深度定制前后处理模块失败时触发该错误码。 可检查护栏配置是否符合要求。 101048 执行深度定制用户回复改写(前处理)失败时触发该错误码。 可检查前处理护栏代码。 101049 执行深度定制大模型生成的参数取值改写(后处理)失败时触发该错误码。 可检查后处理护栏代码。 101050
错误码 当您调用API时,如果遇到“APIGW”开头的错误码,请参见API网关错误码进行处理。遇到“APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决。
为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments/{deployment_id}/caltokens 表1
使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。 流程型Agent:以工作流为任务执行核心,用户可以通过在画布上“拖拽”节点来搭建任务流程。支持编排的节点类型包
默认值:1.0 最大口令限制 用于控制聊天回复的长度和质量。 默认值:2048 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。 默认值:0 词汇重复度控制 用于调整模型对频繁出现的词汇的处理方式。调高参数会使模型减少相同词汇的重复使
以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大上下文长度 可处理最大输出长度 说明 西南-贵阳一 Pangu-
文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。 数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式如下: 图1 数据参考格式 图2
)。 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
据模型可处理最大Token长度,选择合适的模型,从而提高模型的整体效果,详见表1。 此外,不同类型的NLP大模型在训练过程中,读取中文、英文内容时,字符长度转换为Token长度的转换比有所不同,详见表2。 表1 不同系列NLP大模型对处理文本的长度差异 模型名称 可处理最大Token长度
训练数据集。 类别特征列 指定使用LabelEncoder处理的字符串类型类别特征的列表。格式为["列名1","列名2"],默认设置为[],表示没有需要处理的类别特征。 LabelEncoder的作用是将类别特征转换为数值型特征,使模型能够处理这些特征。 非特征列 列出不需要输入到模型中的特
生成文本的最大token数量。 输入的文本加上生成的文本总量不能超过模型所能处理的最大长度。 最小值:1 最大值:不同模型支持的token长度,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 缺省值:默认部署时token长度最大值,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。
大模型因具备更强的泛化能力,能够沉淀行业经验,并更高效、准确地获取信息。 大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。
清洗文本类数据集 通过专用的清洗算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 清洗文本类数据集 合成文本类数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够
会被模型单独处理。较大的patch_size意味着模型主干部分的一个网格代表更大范围的区域,但局部的细节信息可能会被忽略,较小的patch_size则相反。需要注意: 数据格式为[int,int,int],第一个值需要大于0小于等于4,第二、三个参数都需要大于1小于等于20。 在
步骤2:配置开始节点 设定工作流的起始点。 步骤3:配置大模型节点 将大模型节点加入工作流,用于处理复杂的自然语言理解或生成任务。 步骤4:配置意图识别节点 配置该节点来分析用户输入,识别其意图,以便后续处理。 步骤5:配置提问器节点 配置一个提问器节点,用于向用户或系统提出问题,获取所需信息。
保证微调数据的正确性,多样性,复杂性。 保证微调数据能覆盖对应任务所涉及的所有场景。 微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数