检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
已发布北京四区域 文字识别套件 OBS 2.0支持通用单模板工作流 文字识别套件提供单模板开发的工作流,通过工作流指引构建文字识别模板,识别单个板式图片中的文字,实现自定义结构化信息识别。 已发布北京四区域 通用单模板工作流 OBS 2.0支持多模板分类工作流 文字识别套件提供多模板分
包括“应用名称”(必填项)、“应用负责人”和“应用描述”。 图3 基本信息 工作流配置 选择“所属行业”和“选择工作流”。当前视觉套件提供“零售商品识别工作流”、“热轧钢板表面缺陷检测工作流”、“云状识别工作流”、“刹车盘识别工作流”等。 图4 工作流配置 资源配置 图5 资源配置 分别选择“数据处理资源
ts Pro开放了文字识别套件、自然语言处理套件、视觉套件、HiLens套件,详细介绍请见产品介绍。用户基于自身行业、场景的需求,快速自定制需求,选择合适的套件以及工作流,然后根据工作流指引进行应用开发。 用户使用ModelArts Pro开发应用的流程如图1所示,首次使用ModelArts
表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片,且数据集中每个标签要有大于5个样本。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
jpg”,那么标注文件的文件名应为“IMG_20180919_114745.xml”。 第二相面积含量测定工作流标注时使用多边形标注框标注图片。如果标注框坐标超过图片,将无法识别该图片为已标注图片。 第二相标注的标注文件需要满足PASCAL VOC格式,格式详细说明请参见表1。 表1 PASCAL VOC格式说明
默认进入“我的应用”页签。 图1 工作台 在“我的应用”页签下,单击“新建应用”。 进入“新建应用”页面。 图2 新建应用 您也可以单击“我的工作流”,切换至“我的工作流”页签,选择工作流并单击卡片中的“新建应用”。 根据业务需求填写“基本信息”、“工作流配置”和“资源配置”。 图3 新建应用 基本信息
型 。 图2 政务场景 零售场景 构建商品视觉自动识别的模型,可用于无人超市、蛋糕生鲜识别等场景。随着商品种类的更新,收银员即可迭代更新模型。 特点:构建商品视觉自动识别的模型,可用于无人超市等场景。 优势:用户自定义模型可以实现99.5%的识别准确率,可以实现秒级识别整盘商品,
应用于政府、金融、法律等行业。 自然语言处理套件提供了预置工作流,覆盖多种场景,支持自主上传训练数据,自主构建和升级高精度识别模型。用户自定义模型精度高,识别速度快。 通用文本分类工作流 多语种文本分类工作流 通用实体抽取工作流 通用文本分类工作流 功能介绍 支持自主上传文本数据
更加高效。使用专属资源池需要在ModelArts创建专属资源池。 SKU 标准化产品单元,即商品各类单品的图片。 在ModelArts Pro服务中使用视觉套件的零售商品识别工作流时,如果上传的数据含有未标注数据,就需要创建SKU,方便后续对数据进行自动标注。
在使用通用文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计分类标签 首先需要确定好文本分类的标签,即希望识别出文本的一种结果。例如分类用户对商品的评论,则可以以“positive”、“neutral”、“negative”等作为用户对某商品评论的
数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有一个默认存储位置。如果需要修改数据集存储位置,请单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 说明: “数据集输出位置”不能与“数据
”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
型训练”页面下方显示查看训练详情。 图1 训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。
板至本地查看。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的
”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
板至本地查看。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的
果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可
在钢铁或其下游企业,常需要对钢铁显微成像的金相图片第二相面积含量进行测定。ModelArts Pro提供第二相面积含量测定工作流,能快速准确的返回第二相面积含量测定结果。 功能介绍 支持自主上传显微成像的,且包含基础相和第二相的图片数据,构建第二相面积含量测定模型,能快速准确反馈测定结果。
情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训
已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。