检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
已有数据集。 方法2:使用同步数据源功能。将图片上传到数据集输入目录下(或者其子目录),单击数据集详情页中的“同步数据源”将新增图片导入。需注意的是,同步数据源同时也会将OBS已删除的文件从数据集也删除,请谨慎操作。 方法3:新建数据集。将图片上传至OBS任意目录,可以直接使用这
Gallery共享了算法、Notebook代码样例、数据集、镜像、模型、Workflow等多种AI资产,为了方便快速搜索相关资产,提供了多种快速搜索方式以及收藏功能,提升资产的查找效率。 搜索资产 在各类资产模块页面,通过如下几种搜索方式可以提高资产的查找效率,快速找到适合的算法、模型、数据集、镜像、Workflow等资产。
测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的AI应用版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题:
只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal VOC格式的XML标注文件以及Mask图像。 其他类型的数据集可以使用版本发布功能。 父主题:
数据类型:系统会根据您的数据集,匹配到相应的数据类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输入位置:用来存放源数据集信息,例如本案例中从Gallery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。 数据集输出位置:用来存放输出的
的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 父主题:
数据类型:系统会根据您的数据集,匹配到相应的数据类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输入位置:用来存放源数据集信息,例如本案例中从Gallery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。 数据集输出位置:用来存放输出的
mmlu_subject_mapping.json # 数据集配置 ├── ... ├── evaluators ├── evaluator.py # 数据集数据预处理方法集 ├── model
odelArts数据集。 删除图片:您可以依次单击选中图片进行删除,也可以勾选“选择当前页”对该页面所有图片进行删除。 所有的删除操作均不可恢复,请谨慎操作。 修改标注 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 基于图片修改 在数据集详情页面,单击“已标
导出新数据集的名称。 export_new_dataset_work_path String 导出新数据集的工作目录。 ratio_sample_usage Boolean 指定切分比例后,是否按指定比例随机分配训练-验证集。可选值如下: true:主动随机分配训练集-验证集 fal
Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Triton是一个高性能推理服务框架,提供HTTP/gRP
Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的AI应用在线模型体验,可以实现模型服务的即时可用性,开发者无需经历
Gallery的数据模块支持数据集的共享和下载。在AI Gallery的“数据”中,可以查找并下载满足业务需要的数据集。也可以将自己本地的数据集发布至AI Gallery中,共享给其他用户使用。 “资产集市 > 算法”:共享了算法。 AI Gallery的算法模块支持算法的共享和订阅。在AI
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 父主题: 使用自动学习实现图像分类
如图2。开发者可以通过Workflow进行有向无环图(Directed Acyclic Graph,DAG)的开发,整个DAG的执行就是有序的任务执行模板,依次执行从数据标注、数据集版本发布、模型训练、模型注册到服务部署环节。如果想了解更多关于Workflow您可以参考Workflow简介。
导出新数据集的名称。 export_new_dataset_work_path String 导出新数据集的工作目录。 ratio_sample_usage Boolean 指定切分比例后,是否按指定比例随机分配训练-验证集。可选值如下: true:主动随机分配训练集-验证集 fal
Studio大模型即服务平台(下面简称为MaaS)的Llama3.1-8B模型框架,创建并部署一个模型服务,实现对话问答。通过学习本案例,您可以快速了解如何在MaaS服务上的创建和部署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
“我的订阅”。您可以根据实际需求选择AI Gallery中已订阅的模型。您需要在目标模型的左侧单击下拉三角标,选择合适的版本。查找模型参见从Gallery订阅模型。 计算节点规格 在下拉框中,您可以选择目前ModelArts支持的节点规格选项。 计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。
创建数据集 ModelArts Standard提供了数据管理功能,用户可以在ModelArts Standard中创建数据集,用于管理、预处理、标注数据。 如果用户已经准备了可用于训练的数据,直接上传到OBS即可,无需使用数据管理功能。 创建数据集 标注数据 发布数据集 开发调试