检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
端插件时不稳定,需尝试多次。 Step4 云上环境依赖库安装 在进入容器环境后,可以使用不同的虚拟环境,例如TensorFlow、PyTorch等,但是实际开发中,通常还需要安装其他依赖包,此时可以通过Terminal连接到环境里操作。 在VS Code环境中,执行Ctrl+Shift+P。
权限”。单击右上角“创建自定义策略”,“策略名称”为“Policy1”,策略配置方式选择JSON视图,输入策略内容,单击“确定”。 自定义策略“Policy1”的具体内容如下,可以直接复制粘贴。 { "Version": "1.1", "Statement": [ {
distributed.init_process_group()导致超时。 处理方法 如果是多个节点复制不同步,并且没有barrier的话导致的超时,可以在复制数据之前,先进行torch.distributed.init_process_group(),然后再根据local_rank()==0去复制数据,之后再调用torch
/scripts/obs_pipeline.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的
/scripts/obs_pipeline.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的
管理等。一般用户选择此项即可。 自定义:如果对用户有更精细化的权限管理需求,可使用自定义模式灵活按需配置ModelArts创建的委托权限。可以根据实际需在权限列表中勾选要配置的权限。 勾选“我已经详细阅读并同意《ModelArts服务声明》”,单击“创建”,完成委托授权配置。 父主题:
请前往权限管理,查看是否具有OBS访问授权。如果没有,请参考配置访问授权(全局配置)。 请确认是否有OBS桶的访问权限 进入OBS控制台页面,可以看到所有的OBS桶列表,进入需要访问的桶,确认是否有权限访问,如果无权限则会报错。 进入OBS控制台页面,确认OBS桶是否存在。 父主题:
可通过总览页面,快速判断是否有其他模块的作业或实例在运行中,并进入到相关作业或实例上,判断是否使用了专属资源池。如判断相关作业或实例可停止,则可以停止,释放出更多的资源。 图1 总览 单击进入专属资源池详情页面,查看作业列表。 观察队头是否有其他作业在排队,如果已有作业在排队,则新建的作业需要继续等待。
选择模型服务,单击操作列的“更多 > 设置QPS”,在弹窗中修改数值,单击“提交”启动修改任务。 图1 修改QPS 在我的服务列表,单击服务名称,进入服务详情页,可以查看修改后的QPS是否生效。 父主题: 管理我的服务
仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码) 在开发环境(notebook)申请相同规格的开发环境实例。 在noteb
在本地PC的hosts文件中配置域名和IP地址的对应关系。 三、网络代理设置 如果用户使用的网络有代理设置要求,请检查代理配置是否正确。也可以使用手机热点网络连接进行测试排查。 检查代理配置是否正确。 图2 PyCharm网络代理设置 四、AK/SK不正确 获取到的AK/SK信息
线带宽不可以这么计算。 如果Tree算法算出来的总线带宽相当于是相对Ring算法的性能加速。算法计算总耗时减少了,所以用公式算出来的总线带宽也增加了。理论上Tree算法是比Ring算法更优的,但是Tree算法对网络的要求比Ring高,计算可能不太稳定。 Tree算法可以用更少的数据通信量完成all
统默认里面自带的。 如果必须指定卡ID,需要注意1/2/4规格下,指定的卡ID与实际分配的卡ID不匹配的情况。 如果上述方法还出现了错误,可以去notebook里面调试打印CUDA_VISIBLE_DEVICES变量,或者用以下代码测试,查看结果是否返回的是True。 import
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多
resnet50 -b 128 --epochs 5 dog_cat_1w/ 此处的“demo”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择单GPU规格。 单击“提交”,在“信息确认”页面,确认
sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多
建议增加1个容器,也可以在全量推理或增量推理的容器上启动。 前提条件 已准备好DevServer环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保容器可以访问公网。 步骤一 检查环境
Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS
对于获取用户Token接口,返回如图1所示的消息头。 其中“x-subject-token”就是需要获取的用户Token。有了Token之后,您就可以使用Token认证调用其他API。 图1 获取用户Token响应消息头 响应消息体 响应消息体通常以结构化格式返回,与响应消息头中Cont