检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建模型失败,如何定位和处理问题? 问题定位和处理 创建模型失败有两种场景:创建模型时直接报错或者是调用API报错和创建模型任务下发成功,但最终模型创建失败。 创建模型时直接报错或者是调用API报错。一般都是输入参数不合法导致的。您可以根据提示信息进行排查修改即可。 创建模型任务
单击“创建”,进入创建AI应用界面,元模型选择“从容器镜像中选择”,选择自定义镜像; 配置“容器调用接口”和端口号,端口号与模型配置文件中的端口保持一致; 图1 修改端口号 设置完成后,单击“立即创建”,等待AI应用状态变为“正常”; 重新部署在线服务。 父主题: 导入模型
模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述
通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志 问题现象 用户通过OBS导入模型时,选择使用基础镜像,用户自己编写了部分推理代码实现自己的推理逻辑,出现故障后希望通过故障日志排查定位故障原因,但是通过logger打印日志无法在“在线服务”的日志中查看到部分内容。
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,
通过OBS创建模型时,构建日志中提示pip下载包失败 问题现象 通过OBS创建模型构建失败,查看构建日志,提示pip下载包失败。如下载numpy 1.16版本失败。 原因分析 一般下载包失败时,可能有如下几个原因: pip源中不存在该包,当前默认pip源为pypi.org中的包,请在pypi
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,
各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,
创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的? 问题现象 创建模型时,元模型来源指定的OBS目录下存放了自定义的文件和文件夹,都会复制到镜像中去。复制进去的路径是什么,怎么读取对应的文件或者文件夹里面的内容? 原因分析 通过OBS导入模型时,ModelArts会将指
模型管理 创建模型失败,如何定位和处理问题? 导入模型提示该账号受限或者没有操作权限 用户创建模型时构建镜像或导入文件失败 创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的? 通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志 通过O
删除模型 删除模型对象。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型或模型调试生成的模型对象进行模型对象删除 1 2 3 4 5 6 from modelarts
运行出错 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内部存在同名包,而又未采用相对导入,将会出现冲突,导致部署或预测失败。 父主题:
将自定义的推理文件和模型配置文件保存在训练生成的模型文件目录下。如训练生成的模型保存在“/home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/model/”中,则推理文件“customize_service.py”和模型配置文件“config
自定义镜像导入模型部署上线调用API报错 部署上线调用API报错,排查项如下: 确认配置文件模型的接口定义中有没有POST方法。 确认配置文件里url是否有定义路径。例如:“/predictions/poetry”(默认为“/”)。 确认API调用中body体中的调用路径是否拼接
训练日志失败分析 在ModelArts Standard中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。 ModelArts Standard提供了训练作业失败定位与分析功能,如果训练作业运行失败,ModelArts会自动识别导致作业失败的原因,
查询模型详情 查询当前模型对象的信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型生成的模型对象进行模型详情查询 1 2 3 4 5 6 7 from modelarts
PyTorch模型转换为Onnx模型(可选) 获取onnx模型有以下两种方式。下文介绍如何通过方式一进行操作。如果采用方式二,可以跳过此步骤。 方式一:使用官方提供的模型转换脚本将Pytorch模型转换为onnx模型。 方式二:对于提供了onnx模型的仓库,可以直接下载onnx模型。 通
”或“部署”,可以直接使用模型进行训推。 当按钮置灰时,表示模型不支持该任务。 模型介绍 表1列举了ModelArts Studio大模型即服务平台支持的模型清单,模型详细信息请查看界面介绍。 表1 模型广场的模型系列介绍 模型系列 模型类型 应用场景 支持语言 GLM-4 文本生成