检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
“权限管理 > 权限”,单击右上角的“创建自定义策略”,设置策略。 “策略名称”:设置自定义策略名称,例如:trainJob。 “策略配置方式”:选择JSON视图。 “策略内容”:填入如下内容。 { "Version": "1.1", "Statement": [
选择远程连接到云上开发环境实例对应的Python解释器。 图12 设置运行参数(2) 当需要调试代码时,可以直接打断点,然后使用debug方式运行程序。 图13 使用debug方式运行程序 此时可以进入debug模式,代码运行暂停在该行,且可以查看变量的值。 图14 Debug模式下查看变量值 父主题:
参数类型 描述 peerConnectionList 否 Array of peerConnectionList objects Peer方式打通网络列表。 表8 peerConnectionList 参数 是否必选 参数类型 描述 peerVpcId 是 String 对端的VPC
SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm.sh脚本示例如下。 方式一:通过OpenAI服务API接口启动服务 (1)非多模态
自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据集标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列的选取。标签列目前支持离散和连续型数据,只能选择一列。 声音分类训练失
话框中,确认信息无误,然后单击“确定”。只有处于“运行中/停止失败”状态的弹性节点Server可以执行停止操作。 停止服务器为“强制关机”方式,会中断您的业务,请确保服务器上的文件已保存。 父主题: Lite Server资源管理
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
AuthTypeApiBasicInfo 参数 参数类型 描述 api_id String API编号。 api_method String 请求方式包含GET、POST、PUT、DELETE、HEAD、PATCH、OPTIONS、ANY,固定返回ANY。 api_name String
如果使用“我的算法”创建训练作业,则在创建算法时,可以把相关文件放置在配置的“代码目录”下,算法的“启动方式”必须选择“预置框架”。 如果使用“自定义算法”创建训练作业,则可以把相关文件放置在配置的“代码目录”下,“启动方式”必须选择“预置框架”。 需要在创建训练作业前将相关文件上传至OBS路径下,文件打包要求请参见安装文件规范。
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户,
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints
ModelArts的Notebook仅支持挂载OBS的并行文件系统,挂载至Notebook容器“/data/”的子目录下。 动态挂载OBS并行文件系统操作 方式1:通过ModelArts控制台操作 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间 > Notebook”,进入“Notebook”页面。