检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、使用该量化工具,需要切换conda环境。
password='***', region_name='***', project_id='***') 如果您的华为云账号已经升级为华为账号,则账号认证方式将不可用,请创建一个IAM用户,使用IAM用户认证。 使用IAM用户认证 “account”填写您的账号名,“username”填写您的IAM用户名。
-s建立软连接 如果代码中涉及文件绝对路径,由于Notebook调试与训练作业环境不同,可能会导致文件绝对路径不一致,需要修改代码内容。推荐使用软链接的方式解决该问题,用户只需提前建立好软链接,代码中的地址可保持不变。 新建软链接: # ln -s 源目录/文件 目标目录/文件 # 例如 ln
置断点续训练。 开启容错检查 用户可以在创建训练作业时通过设置自动重启的方式开启容错检查。 使用ModelArts Standard控制台的创建训练作业页面设置自动重启: 用户可以在控制台页面通过开关的方式开启自动重启。“自动重启”开关默认不开启,表示不做重新下发作业,也不会启用
该界面显示已创建实例的状态为“运行中”。当前有两种方式,可以打开VS Code连接。 方式一:单击“操作”列的“更多 > VS Code接入”。弹出“是否打开Visual Studio Code?”对话框。 图1 打开VS Code接入 方式二:单击“操作”列的“打开”,自动进入Launcher页面,然后单击“VS
修改InternVL/internvl_chat/internvl/train/internvl_chat_finetune.py 文件,加入如下命令,用于引入优化代码包。 from ascendcloud_multimodal.train.models.internvl2 import asce
如图1,下发重置节点任务时需要填写以下参数。 表1 重置参数说明 参数名称 说明 操作系统 选择下拉框中支持的操作系统。 配置方式 选择重置节点的配置方式。 按节点比例:重置任务包含多个节点时,可以设置同时被重置节点的最高比例。 按实例数量:重置任务包含多个节点时,可以设置同时被重置节点的最大个数。
--quantization:推理量化参数。当使用量化功能,则在推理服务启动脚本中增加该参数,若未使用量化功能,则无需配置。根据使用的量化方式配置,可选择awq或smoothquant方式。 --speculative-model ${container_draft_model_path}:投机草稿模型
口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm
py”。由于后台会自动将代码目录下载至容器的“/home/work/user-job-dir/”目录下,因此您可以在启动文件“test.py”中通过如下方式调用“.sh”文件: import os os.system('bash /home/work/user-job-dir/code/test
多时,会触发dispatcher的熔断机制,导致预测失败。建议您检查模型返回结果,处理模型报错问题,可尝试通过调整请求参数、降低请求流量等方式,提高模型调用的成功率。 父主题: 服务预测
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step6 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 创建服务启动脚本 python -m vllm.entrypoints
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户,
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints
"bits": 8, "group_size": -1, "desc_act": false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints
add_argument('--init_method', default='tcp://xxx',help="init-method") 通过使用解析方式args, unparsed = parser.parse_known_args()代替args = parser.parse_args()解决该问题。代码示例如下:
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}