检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
返回一个数组,包含DataFrame的所有列。 count() 返回DataFrame中的行数。 describe() 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first() 返回第一行。 head(n) 返回前n行。 show() 用表格形式显示DataFrame。 take(num)
返回一个数组,包含DataFrame的所有列。 count() 返回DataFrame中的行数。 describe() 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first() 返回第一行。 head(n) 返回前n行。 show() 用表格形式显示DataFrame。 take(num)
json_format和CAST(json AS VARCHAR)具有完全不同的语义。 json_format将输入JSON值序列化为遵守7159标准的JSON文本。JSON值可以是JSON对象、JSON数组、JSON字符串、JSON数字、true、false或null: SELECT json_format(JSON
'aac', 'zq'); -- 'zbd' Unicode函数 normalize(string) → varchar 描述:返回NFC形式的标准字符串。 select normalize('e'); _col0 ------- e (1 row) normalize(string
弹性云服务器的“可用区”、“虚拟私有云”、“安全组”,需要和待访问集群的配置相同。 选择一个Windows系统的公共镜像。例如,选择一个标准镜像“Windows Server 2012 R2 Standard 64bit(40GB)”。 其他配置参数详细信息,请参见购买弹性云服务器。
Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int
返回DataFrame的行数。 DataFrame describe(java.lang.String... cols) 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 Row first() 返回第一行。 Row[] head(int n) 返回前n行。 void show() 用表
Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int
返回DataFrame的行数。 DataFrame describe(java.lang.String... cols) 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 Row first() 返回第一行。 Row[] head(int n) 返回前n行。 void show() 用表
返回DataFrame的行数。 DataFrame describe(java.lang.String... cols) 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 Row first() 返回第一行。 Row[] head(int n) 返回前n行。 void show() 用表
Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int
返回DataFrame的行数。 DataFrame describe(java.lang.String... cols) 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 Row first() 返回第一行。 Row[] head(int n) 返回前n行。 void show() 用表
Long 返回DataFrame中的行数。 describe(cols: String*): DataFrame 计算统计信息,包含计数,平均值,标准差,最小值和最大值。 first(): Row 返回第一行。 Head(n:Int): Row 返回前n行。 show(numRows: Int
-ls -R /sql/parquet Flink对接HDFS分区 Flink对接HDFS支持自定义分区。 Flink文件系统分区支持使用标准的Hive格式。不需要将分区预先注册到表目录中,分区是根据目录结构推断。 例如,根据下面的目录分区的表将被推断为包含日期时间和小时分区。 path
FlinkServer:基于Web的作业管理二次开发平台,可直接在界面开发与管理FlinkSQL作业。具有运维管理界面化、作业开发SQL标准化等特点。 Flink结构如图2所示。 图2 Flink结构 Flink整个系统包含三个部分: Client Flink Client主要
数据输出的相关接口 API 说明 def print(): DataStreamSink[T] 数据输出以标准输出流打印出来。 def printToErr() 数据输出以标准error输出流打印出来。 def writeAsText(path: String): DataStreamSink[T]
数据输出的相关接口 API 说明 def print(): DataStreamSink[T] 数据输出以标准输出流打印出来。 def printToErr() 数据输出以标准error输出流打印出来。 def writeAsText(path: String): DataStreamSink[T]
数据输出的相关接口 API 说明 def print(): DataStreamSink[T] 数据输出以标准输出流打印出来。 def printToErr() 数据输出以标准error输出流打印出来。 def writeAsText(path: String): DataStreamSink[T]
流式处理(Streaming Processing):支持秒级延迟的流式处理,可支持多种外部数据源。 查询分析(Query Analysis):支持标准SQL查询分析,同时提供DSL(DataFrame), 并支持多种外部输入。 MRS对外提供了基于Spark组件的应用开发样例工程,本实践
数据输出的相关接口 API 说明 def print(): DataStreamSink[T] 数据输出以标准输出流打印出来。 def printToErr() 数据输出以标准error输出流打印出来。 def writeAsText(path: String): DataStreamSink[T]