检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
3指使用0-3卡执行训练任务 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:指令微调训练常见问题解决
提供简单易用、安全可靠的镜像管理功能,帮助您快速部署容器化服务。您可以通过界面、社区CLI和原生API上传、下载和管理容器镜像。 您制作的自定义镜像需要上传至SWR服务。ModelArts开发环境、训练和创建模型使用的自定义镜像需要从SWR服务管理列表获取。 图1 获取镜像列表 对象存储服务
3指使用0-3卡执行训练任务。 训练成功标志 “***** train metrics *****”关键字打印 训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:微调训练常见问题解决。
了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4
了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4
代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_type=Ascend-Powered-Engine。
软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包
1.RC2.3 Python 3.9 CANN 8.0.RC3 MindSpore Lite 2.3.0 OS arm 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.910-xxx.zip软件包中的AscendCloud-CV-6
n上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模
n上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模
"software|firmware" #查看驱动和固件版本 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.5。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。
了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4
id:只取算法的id; subscription_id+item_version_id:取算法的订阅id和版本id; code_dir+boot_file:取训练作业的代码目录和启动文件。 tasks Array of TaskResponse objects 异构训练作业的任务列表。
输出文本的分布一致。这种方法外推LLM的第二顶层特征向量,能够显著提升生成效率。 Eagle训练了一个单层模型,使用input token和基模型推理出的hidden-state作为输入,输出hidden-state。然后根据这个输出的hidden-state使用基模型的原始LL
"software|firmware" #查看驱动和固件版本 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。
n上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模
通过功能,上传Dockerfile文件和模型包文件到Notebook中,默认工作目录/home/ma-user/work/。 Dockerfile文件的具体内容请参见附录1:Dockerfile模板。模型包文件需要用户自己准备,样例内容请参见附录2:模型包文件样例。 图2 上传dockerfile文件和模型包文件
基于数据链接下载数据并解压,放置在指定目录下,训练集和测试集的大小分别为(50000,3,32,32)和(10000,3,32,32)。 考虑到下载cifar10数据集较慢,基于torch生成类似cifar10的随机数据集,训练集和测试集的大小分别为(5000,3,32,32)和(1000,3,32,32
_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workspace_id 是 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。
创建Workflow服务部署节点 功能介绍 通过对ModelArts服务管理能力的封装,实现Workflow新增服务和更新服务的能力。主要应用场景如下: 将模型部署为一个Web Service。 更新已有服务,支持灰度更新等能力。 属性总览 您可以使用ServiceStep来构建