检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
INT4:该压缩策略与INT8相比,可以进一步减少模型的存储空间和计算复杂度。 配置资源。选择计费模式并设置训练单元。 可选择开启订阅提醒。开启后,系统将在本次压缩任务状态变更时,向用户发送短信/邮件提醒。 填写基本信息,包括任务名称、压缩后模型名称与描述,单击“立即创建”。 当压缩任务状态为“已完成”时,表示模型已完成压缩操作。
表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但也需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 Agent微调 在训练Agent所需的NLP大模型时,可
模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类问题
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 父主题: 训练科学计算大模型
要求的信息。 使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段
支持前导小数点的字段,这个报错的意思是找不到这个字段,很可能是因为用户使用的jackson版本太老导致。 建议客户本地将jackson版本升级到和华为云java sdk一致,jackson版本要求请见pom.xml。 引用华为云java sdk的bundle包来解决jackson版本冲突的问题。
时,需要注意init_channels要能够整除num_heads里的两个数。调大此参数,模型会变大,可能会导致内存不足的问题。取值需大于0。注意此值调大可能会引起内存不足的场景,导致训练作业失败。 正则化参数 路径删除概率 用于定义路径删除机制中的删除概率。路径删除是一种正则化
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
最大值:不同模型支持的token长度,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 缺省值:默认部署时token长度最大值,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 说明: token是指模型处理和生成文本的基本单位。t
认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。 获取Token方法: Token可通
训练NLP大模型所需数据量 使用数据工程构建盘古NLP大模型数据集进行模型训练时,所需数据量见表2。 表2 构建NLP大模型所需数据量 模型规格 训练类型 推荐数据量 最小数据量(数据条数) 单场景推荐训练数据量 单条数据Token长度限制 N1 微调 - 1000条/每场景 ≥ 1万条/每场景
在盘古大模型中,以N1系列模型为例,盘古1token≈0.75个英文单词,1token≈1.5汉字。不同模型的具体情况详见表1。 表1 token比 模型规格 token比(token/英文单词) token比(token/汉字) N1系列模型 0.75 1.5 N2系列模型 0.88 1.24
Pangu-NLP-N4-Chat-32K-20241130 32K 2024年11月发布的版本,仅支持32K序列长度推理部署。 表2 Token转换比 模型规格 Token比(Token/英文单词) Token比(Token/汉字) N1 0.75 1.5 N2 0.88 1.24 N4 0.75
来源一:真实业务场景数据。 来源二:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,然后利用大模型(如盘古提供的任意规格的基础功能模型)采用self-instruct等方式,泛化出更多的业务场景数据。 方法一:在大模型输入的Prompt中包含“人设赋予”、“