检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
比如盘古提供的任意一个规格的基础功能模型)采用self-instruct等方式泛化出更多的业务场景数据。示例如下: 大模型输入: 请改写命令案例,生成10个相似命令,保证每个命令都可以调用正确的指标接口。 请注意: 1. 命令必须契合人类常见的提问方式,命令方式必须保证多样化 2
数据批量大小是指对数据集进行分批读取训练时,所设定的每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规
变更计费模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
模型部署、模型评测到模型调用,全面掌握盘古大模型的开发过程。同时,结合应用开发的提示词工程、Agent开发,您将能够高效构建智能应用,充分释放盘古大模型的潜力,为业务创新提供强大支持。 数据工程 使用数据工程构建数据集 模型开发 开发盘古NLP大模型 开发盘古CV大模型 开发盘古预测大模型
约束与限制 本节介绍盘古大模型服务在使用过程中的约束和限制。 规格限制 盘古大模型服务的规格限制详见表1。 表1 规格限制 资产、资源类型 规格 说明 模型资产、数据资源、训练资源、推理资源 所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类问题
Studio大模型开发平台为用户提供了多种规格的科学计算大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古科学计算大模型规格 模型支持区域 模型名称 说明 西南-贵阳一 Pangu-AI4S-Ocean_24h-20241130 202
Studio大模型开发平台为用户提供了多种规格的NLP大模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大上下文长度
模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构
时,需要注意init_channels要能够整除num_heads里的两个数。调大此参数,模型会变大,可能会导致内存不足的问题。取值需大于0。注意此值调大可能会引起内存不足的场景,导致训练作业失败。 正则化参数 路径删除概率 用于定义路径删除机制中的删除概率。路径删除是一种正则化
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 父主题: 训练科学计算大模型
在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修
表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但也需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 Agent微调 在训练Agent所需的NLP大模型时,可
INT4:该压缩策略与INT8相比,可以进一步减少模型的存储空间和计算复杂度。 配置资源。选择计费模式并设置训练单元。 可选择开启订阅提醒。开启后,系统将在本次压缩任务状态变更时,向用户发送短信/邮件提醒。 填写基本信息,包括任务名称、压缩后模型名称与描述,单击“立即创建”。 当压缩任务状态为“已完成”时,表示模型已完成压缩操作。
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
操作列“扩缩容”。 在“扩缩容”页面完成当前资源的扩缩容操作,平台将根据扩缩容前后的规格差异支付或退还费用差价。 缩容可能会影响进行中的任务以及后续任务的创建,缩容前,请先确认需要缩容的资源已释放。 父主题: 准备工作
在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。