检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么是项目? 什么是项目? 云的每个区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存储资源和网络资源),以区域默认单位为项目进行授权,IAM用户可以访问您账号中该区域的所有资源。 如果您希望进行更加精细的权限控制,可以在区域默认的项目中创建子项目,
阶段六:统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据集发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照示例一和示例二提供的案例和SQL语句进行作业测试。 图2 作业界面 示例一: 假设有人输入以下代码试图直接查询敏感数据。
应用场景 政企信用联合风控 金融机构对于中小微企业的信用数据通常不足,央行征信数据覆盖率有限,不良企业多家骗贷事件屡有发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势:
执行样本对齐 功能介绍 执行样本对齐 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sampleAlignment 表1 路径参数 参数 是否必选 参数类型
联邦sql分析作业运行过慢,如何提升执行速度? 提升计算并行度 可以在作业开发界面的运行参数中,填写user.task.concurrency参数,提升用户侧此类加密任务的并行度。推荐该值填4-16左右,不建议超过30。 图1 填写参数 tics.task.concurrency
批量隐匿查询 隐匿查询,也称隐私信息检索,是指查询方隐藏被查询对象关键词或客户id信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。数据不出门且能计算,杜绝数据缓存的可能性。 例如查询方希望查询身份证id为“张三”的人信贷公式数据,发起了一个类似于SELECT salary
图1 获取作业结果路径 发起方执行恶意脚本,试图篡改所获取的路径中的作业训练结果。 图2 执行恶意脚本 发起方执行恶意脚本后,由于安全沙箱确保每个横向联邦作业都是隔离的,当某个作业想去访问或篡改其他作业相关的文件时,无法找到作业执行结果文件,因此脚本执行失败、无法篡改,从而实现安全防护。
执行ID选取截断 功能介绍 执行ID选取截断(样本粗筛) 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/idTruncation 表1 路径参数 参数
打开名称为“credentials.csv”的文件,即可查看访问密钥(Access Key Id和Secret Access Key)。 每个用户仅允许新增两个访问密钥。 为保证访问密钥的安全,访问密钥仅在初次生成时自动下载,后续不可再次通过管理控制台界面获取。请在生成后妥善保管。
打开名称为“credentials.csv”的文件,即可查看访问密钥(Access Key Id和Secret Access Key)。 每个用户仅允许新增两个访问密钥。 为保证访问密钥的安全,访问密钥仅在初次生成时自动下载,后续不可再次通过管理控制台界面获取。请在生成后妥善保管。
查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数
执行纵向联邦模型训练作业 功能介绍 执行纵向联邦模型训练作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/execute 表1 路径参数 参数 是否必选
获取审批详情 功能介绍 本接口用于获取审批详情。 调用方法 请参见如何调用API。 URI GET /v1/agents/{agent_id}/notices/{notice_id} 表1 路径参数 参数 是否必选 参数类型 描述 agent_id 是 String 可信计算节点id。
从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据集的分类相对简单,且数据集经过了扩充导致的; (2)增大每个参与方本地模型训练的迭代次数,可以显著提升最终联邦学习模型的性能。 参与方数据量不同时,独立训练对比横向联邦训练的准确率 本节实验不再将训