检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
迁移过程使用工具概览 基础的开发工具在迁移的预置镜像和开发环境中都已经进行预置,用户原则上不需要重新安装和下载,如果预置的版本不满足要求,用户可以执行下载和安装与覆盖操作。 模型自动转换评估工具Tailor 为了简化用户使用,ModelArts提供了Tailor工具,将模型转换、
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
支持的rope scaling类型 本方案支持的rope scaling类型包括linear、dynamic和yarn,其中linear方法只支持传入一个固定的scaling factor值,暂不支持传入列表。 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
ano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2
OBSPlaceholder(name = "**", object_type = "directory" ) # OBS对象的占位符形式,object_type只支持两种类型, "file" 以及 "directory" 表12 LabelTaskPlaceholder 属性 描述 是否必填 数据类型
支持的节点规格选项。 计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。 针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
冗余。 冗余节点分布策略:冗余节点的分布策略,超节点仅支持step均分:每个超节点内预留相同数量的冗余节点。 冗余实例数:此规格设置的高可用冗余实例数量。冗余系数指的是冗余节点分布策略为step均分时,每个超节点内预留的冗余节点数量。 方式二:在资源池详情页的规格页签设置 图2 规格页签设置
name String 算子名称。 params Object 算子参数,参数类型是map<string,object>,object目前只支持Boolean、Integer、Long、String、List[/topic/body/section/table/tgroup/tbody/row/entry/p/br
订阅免费算法 在AI Gallery中,您可以查找并订阅免费满足业务需要的算法,直接用于创建训练作业。 AI Gallery中分享的算法支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。
上传算法至SFS 下载Swin-Transformer代码。 git clone --recursive https://github.com/microsoft/Swin-Transformer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。
查询训练作业版本列表 功能介绍 根据作业ID查看指定的训练作业版本。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String