检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数,一个ToolProvider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider,InMemoryToolProvider的原理为将完整的工具存入内存,再根据工具检索的结果(
符合预期,可以调整。 required。是否为可选参数。 注意:字段的命名需要以小写字母开头,否则在转换成标准的Json schema时会出现问题,导致模型精度受到影响。 上例中的InputParam为一个复杂的入参,如果工具的入参为基本类型,则不需要再额外定一个结构体,例如: import
psd等格式文档。 初始化 根据相应解析接口定义DocSplit类,以使用华为Pangu DocSplit为例。 其中,filePath指的是需要解析的文档路径;mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。
//服务当前部署在“西南-贵阳一”区域,取值为cn-southwest-2 } } } } 图5 填写请求Body 单击Postman界面“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功,此时单
me"。用户已经提供了公司名称"方欣科技有限公司",并指定了时间范围为今年1月。我将设置"report_type"为"经营异常风险检测",并将"skssqq"设置为"2024-01-01","skssqz"设置为"2024-01-31"。现在,我将调用工具。 行动:使用工具[risk_detection]
的接口快速地调用CSS模型embedding能力。 初始化:根据相应模型定义Embedding类。例如,使用华为CSS Embedding为:Embeddings.of(Embeddings.CSS);。 import com.huaweicloud.pangu.dev.sdk.api
果、思考等信息,AgentSessionStatus为一个枚举,包含Agnet的执行状态。建议直接对Agent的run接口的返回进行修改,以控制Agent的行为。如果想控制中间过程,可以对Agent的runStep的返回进行修改。 通过监听终止Agent的执行 当需要在Agent
例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个token:“over”、“weight”。在中文中,有些汉字会根据语义被整合,如“等于”、“王者荣耀”。 在盘古大模型中,以N1系列模型为例,盘古1token≈0.75个英文单词,1token≈1.5汉字。不同模型的具体情况详见表1。
功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训练会混合不同类型的数据。例如,为防止模型在训练后出现通用问答能力下降,会混入一定的通用数据。 创建训练数据集的常见业务场景包括: 当用户的数据集较小时,可以将多个数据集组合起来进行训练。
后,检查Agent是否需要终止,如果需要终止,则返回true,默认不终止 可以在终止前对agentSession进行修改,如:修改agent的finalAnswer :param agent_session: AgentSession
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和
提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍一下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数控制模型生成行为,如调整温
问题或回答中带有不需要的特定格式内容或者时间戳等。 通过编写代码、正则表达式等进行处理,删除或者修改对应的内容,或者直接过滤掉整条数据。 2 原始数据不符合特定微调数据的格式。 通过编写代码进行处理,修改为特定微调格式的数据,例如对于阅读理解微调数据,需要拼接上阅读理解对应的Prompt。
难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求
调用,此时AgentSession的状态为FINISHED,所以为追问或闲聊。打印的日志为: Agent status = FINISHED, is FINISHED, do not call tool 第二次printPlan打印的结果为: 用户: 定个2点-4点的会议 助手:
图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。 图2 任务详情 评估报告: 任务状态为“已完成”时,查看评估报告。评估报告中包含困惑度、评估概览以及模型结果分析。 困惑度:分数越低,评估结果越好。 评估概览:查看此次评估任务的各个规则指标评分情况。
中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history import SQLMessageHistory
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式,如内存、DCS(Redis)、RDS(Sql)。 import com.huaweicloud.pangu.dev.sdk.api.memory.config.MessageHistoryConfig;
选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。