检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
conf sysctl -p | grep net.ipv4.ip_forward 获取训练镜像。 请确保在正确的Region下获取镜像。建议使用官方提供的镜像部署训练服务。镜像地址{image_url}请参见表1。 docker pull {image_url} 在ECS中Docker登录。
sorflow”,安装方式为“pip”,其版本必须为1.8.0及以上版本。 “模型说明” 为了帮助其他模型开发者更好的理解及使用您的模型,建议您提供模型的说明文档。单击“添加模型说明”,设置“文档名称”及其“URL”。模型说明最多支持3条。 “部署类型” 选择此模型支持部署服务的
|──AscendSpeed # 基于AscendSpeed的训练代码 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
|──AscendSpeed # 基于AscendSpeed的训练代码 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora
/etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward Step2 启动镜像 获取基础镜像。建议使用官方提供的镜像。镜像地址{image_url}参考表2。 docker pull {image_url} 启动容器镜像。启动前请先按照
ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 步骤二 获取基础镜像 建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 启动容器镜像
zer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/
enizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/
TemplateParam object 数据处理模板,如算法ID和参数等。 version_count Integer 数据处理任务的版本数量。 version_id String 数据处理任务对应的数据集版本ID。 version_name String 数据处理任务对应的数据集版本名称。
配置Lite Cluster存储 如果没有挂载任何外部存储,此时可用存储空间根据dockerBaseSize的配置来决定,可访问的存储空间比较小,因此建议通过挂载外部存储空间解决存储空间受限问题。容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,您可根据业务实际情进行选择。 4 (可选)配置驱动
mixtral-8x7b baichuan2-13b 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择snt9b,部署超时时间建议设置为40分钟。此处仅介绍关键参数,更多详细参数解释请参见部署在线服务。 图3 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,
ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward Step2 获取基础镜像 建议使用官方提供的镜像部署服务。镜像地址{image_url}参见表2。 docker pull {image_url} Step3 获取代码并上传
"<|Results|>: None<eor>\n", "MOSS": "<|MOSS|>: 为了保障工作中遵循正确的安全准则,以下是一些建议:\n\n1.了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2
mixtral-8x7b baichuan2-13b 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
nizer文件,具体请参见训练tokenizer文件说明。 步骤3 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/
/etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward Step2 启动镜像 获取基础镜像。建议使用官方提供的镜像。镜像地址{image_url}参见获取软件和镜像。 docker pull {image_url} 启动容器镜像。启动
状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 在ModelArts训练中实现增量训练,建议使用“训练输出”功能。 在创建训练作业时,设置训练“输出”参数为“train_url”,在指定的训练输出的数据存储位置中保存Checkpo
/etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward Step2 启动镜像 获取基础镜像。建议使用官方提供的镜像。镜像地址{image_url}参见获取软件和镜像。 docker pull {image_url} 启动容器镜像。启动