检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Pro在同一个区域。 建议根据业务情况及使用习惯,选择OBS使用方法。 如果您的数据量较小(小于100MB)或数据文件少(少于100个),建议您使用控制台上传数据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Br
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
“开始标注”,在“数据标注”页面手动标注数据。 合并标签 针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。 打开合并标签开关,在下方填入需要合并的标签样本数量“上限值”,以及合并标签后新的“标签名”。 图3 合并标签 查看标签解析 新建并选择训练数据集后,针
“开始标注”,在“数据标注”页面手动标注数据。 合并标签 针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。 打开合并标签开关,在下方填入需要合并的标签样本数量“上限值”,以及合并标签后新的“标签名”。 图5 合并标签 查看标签解析 新建并选择训练数据集后,针
“模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参数值,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。
“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参数值,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。
“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“损失变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。
开发的各个步骤,重新部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。
Pro在同一个区域。 建议根据业务情况及使用习惯,选择OBS使用方法。 如果您的数据量较小(小于100MB)或数据文件较少(少于100个),建议您使用控制台上传数据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Br
“模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 图6 模型评估 评估参数对比 “评估参数对比”下方显示当前模型的评估参数值,包括“精准率”、“召回率”、“F1值”。您可以单击“添加对比版本”。 图7 评估参数对比 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。