检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建盘古多语言文本翻译工作流流程 操作步骤 说明 步骤1:创建并配置多语言文本翻译工作流 本样例场景实现多语言文本翻译工作流的创建与配置。 步骤2:试运行多语言文本翻译工作流 本样例场景实现多语言文本翻译工作流的试运行。 步骤1:创建并配置多语言文本翻译工作流 登录ModelArts Studi
token解析失败,请检查获取token的方法,请求体信息是否填写正确,token是否正确;检查获取token的环境与调用的环境是否一致。 token超时(token expires) ,请重新获取token,使用不过期的token。 请检查AK/SK是否正确(AK对应的SK错误,不匹配;AK/SK中多填了空格)。
学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,
提示词写作实践 提示词写作常用方法论 提示词写作进阶技巧 提示词应用示例
其中,各参数介绍如下: 变量取值:输入参数的各个变量取值。取值可以是数据集中的字段变量,也可以自定义变量值。 保存至任务输出参数(可选):该参数为输出的结果。由于输出结果为问答对形式,因此生成的问题必须选择context参数,回答必须选择target参数。 模型选择:选择平台预置的大模型,用于指令合成。
可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。
来了巨大的挑战。盘古NLP大模型为程序员提供了强大的代码助手,显著提升了研发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化
人满意的精度。此外,模型具备自我学习和不断进化的能力,随着新数据的持续输入,其性能和适应性不断提升,确保在多变的语言环境中始终保持领先地位。 应用场景灵活 盘古大模型具备强大的学习能力,能够通过少量行业数据快速适应特定业务场景的需求。模型在微调后能够迅速掌握并理解特定行业的专业知
Gallery”页签,可对从AI Gallery订阅的数据资产执行以下操作: 查看订阅信息。单击具体数据资产或操作列的“查看订阅信息”,查看该资产的名称描述等订阅信息。 编辑属性操作。单击操作列的“更多 > 编辑属性”,可编辑数据资产的名称、描述以及资产可见性。 删除操作。单击操作列的“更多 > 删除”,可删除当前数据资产。
gemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。 <dependency>
录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 单击页面右下角“立即创建”,回退至“数据导入”页面,在该页面可以查看数据集的任务状态,若状态为“运行成功”,则数据导入成功。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。
插件配置,对应查询需要运行时传值的参数。 响应参数 流式(Header中的stream参数为true) 状态码: 200 表5 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,执行工作流的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个
用户问题,作为运行Agent的输入。 响应参数 流式(Header中的stream参数为true) 状态码: 200 表4 流式输出的数据单元 参数 参数类型 描述 data String stream=true时,执行Agent的消息以流式形式返回。 生成的内容以增量的方式逐步发送回来,
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古