检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Triton是一个高性能推理服务框架,提供HTTP/gRPC等多种服务协议,支持TensorFlow、TensorRT、PyTor
安装CUDA驱动 上文安装NVIDIA驱动是根据CUDA12.0选择的安装包, 因此下文默认安装CUDA 12.0。 进入CUDA Toolkit页面。 选择Operating System、Architecture、Distribution、Version、Installer Type
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
etails_{timestamp}.csv文。accuracy_checking_result_{timestamp}.csv属于API级,标明每个API是否通过测试。建议用户先查看accuracy_checking_result_{timestamp}.csv文件,对于其中没
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
Ascend-vLLM支持的特性 特性名称 特性说明 调度 Page-attention 分块管理kvcache,提升吞吐。 Continuous batching 迭代级调度,动态调整batch,降低延迟,提升吞吐。 Multi-step 一次调度多次推理,降低调度上的cpu-overhead。 量化 W4A16-AWQ、GPTQ
Ascend-vLLM支持的特性 特性名称 特性说明 调度 Page-attention 分块管理kvcache,提升吞吐。 Continuous batching 迭代级调度,动态调整batch,降低延迟,提升吞吐。 Multi-step 一次调度多次推理,降低调度上的cpu-overhead。 量化 W4A16-AWQ、GPTQ
权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。 --max-num-seqs:最大同时处理的请求数,超过后拒绝访问。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq
权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。 --max-num-seqs:最大同时处理的请求数,超过后拒绝访问。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config
维持模型训练不中断,保护长期项目免受时间与资源损耗,确保进展与收益。 大模型应用开发,帮助开发者快速构建智能Agents 在企业中,项目级复杂任务通常需要理解任务并拆解成多个问题再进行决策,然后调用多个子系统去执行。MaaS基于多个优质昇腾云开源大模型,提供优质Prompt模板
知识背景,您可参考Kubernetes基础知识。 CCE 云容器引擎(Cloud Container Engine,简称CCE)是一个企业级的Kubernetes集群托管服务,支持容器化应用的全生命周期管理,为您提供高度可扩展的、高性能的云原生应用部署和管理方案。CCE官网文档可参考云容器引擎。
resourceRequirement resourceRequirement object 运行作业的资源请求量。 priority String 作业优先级。 runningDuration Integer 作业运行时长。 pendingDuration Integer 作业排队时长。 pendingPosition
uggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq