检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本文档适配昇腾云ModelArts 6.5.901版本,请参考获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 获取软件和镜像 表2
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
nels/my-py3-tensorflow-env/logo-* 进入虚拟环境的IPython Kernel。 刷新JupyterLab页面,可以看到自定义的虚拟环境Kernel。如下所示: 单击my-py3-tensorflow-env图标,验证是否为当前环境,如下所示: 清理环境。
查询用户镜像组列表 功能介绍 查询用户镜像信息概览,以镜像名称作为聚合的信息。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{
表1 路径参数 参数 是否必选 参数类型 描述 id 是 String Notebook实例ID,可通过调用查询Notebook实例列表接口获取。 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型
oup用户,请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil。 参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。 准备数据 登录coco
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
镜像适配的Cann版本是cann_8.0.rc3。 Lite Server驱动版本要求23.0.6 PyTorch版本:2.3.1 确保容器可以访问公网。 文档更新内容 6.5.901版本相对于6.3.912版本新增如下内容: 新增ModelLink训练评测,介绍针对ModelLink
Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String SFS Turbo的访问地址。 状态码:400 表20 响应Body参数 参数 参数类型 描述 error_code String ModelArts错误码。 error_msg
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型 ModelArts自动学习,为资深级用户提供模板化开发能力
对于使用公共资源池创建的自动学习作业: 登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进
标注ModelArts数据集中的数据 数据标注场景介绍 通过人工标注方式标注数据 通过智能标注方式标注数据 通过团队标注方式标注数据 管理标注作业 父主题: 数据准备与处理
ModelArts CLI命令参考 ModelArts CLI命令功能介绍 (可选)本地安装ma-cli ma-cli auto-completion自动补全命令 ma-cli configure鉴权命令 ma-cli image镜像构建支持的命令 ma-cli ma-job训练作业支持的命令
使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门
/llm_inference/ascend_vllm/ 执行以下命令制作推理镜像。安装过程需要连接互联网git clone,请确保机器可以访问公网。 nerdctl --namespace k8s.io build -t <镜像名称>:<版本名称> --build-arg BAS
准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。
Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String SFS Turbo的访问地址。 状态码:400 表19 响应Body参数 参数 参数类型 描述 error_code String ModelArts错误码。 error_msg
s库代码的位置,放置在 chown -R ma-user:ma-group 代码的上面。避免transformers安装后由于权限问题无法访问。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 Dockerfile 中的 transformers 的版本。 由默认
s库代码的位置,放置在 chown -R ma-user:ma-group 代码的上面。避免transformers安装后由于权限问题无法访问。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 Dockerfile 中的 transformers 的版本。 由默认