检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
过程。 数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习
省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展示,同时能配置通知及时提醒用户作业卡死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。会启动一个进程来周期性地监控上述两个指标的变化情况。
环境配置故障 Notebook提示磁盘空间已满 Notebook中使用Conda安装Keras 2.3.1报错 Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx Notebook中已安装对应库,仍报错import numba
排查是否是自定义镜像的问题。 自定义镜像构建完成,在ModelArts镜像管理注册时,“架构”和“类型”需要和源镜像保持一致。 图2 注册镜像 父主题: 实例故障
开发环境的Notebook,根据不同的工作环境,对应支持的镜像和版本有所不同。 表3 Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通
#tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── llama2-13b-hf |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── llama2-13b-hf
专属资源池关联SFS Turbo显示异常 问题现象 专属资源池关联SFS Turbo时显示异常,关联失败。 图1 关联异常 图2 报错提示 原因分析 ModelArts缺少SFS Turbo委托权限导致关联失败。 处理方法 需要您给ModelArts配置SFS Turbo委托权限
Notebook无法执行代码,如何处理? 运行训练代码,出现dead kernel,并导致实例崩溃 如何解决训练过程中出现的cudaCheckError错误? 开发环境提示空间不足,如何解决? 如何处理使用opencv.imshow造成的内核崩溃? 使用Windows下生成的文本文件时报错找不到路径? Jup
当您暂时不需要使用弹性节点Server的时候,可以通过对运行中的裸金属实例进行停止操作,停止对资源的消耗。当需要使用的时候,对于停止状态的弹性节点Server,可以通过启动操作重新使用弹性节点Server。 登录ModelArts管理控制台。 在左侧菜单栏中选择“AI专属资源池 >
运行训练代码,出现dead kernel,并导致实例崩溃 在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如
安装ToolKit工具时出现错误,如何处理? 问题现象 在安装ToolKit工具过程中,出现如下错误。 图1 错误提示 解决措施 此问题是因为插件版本和PyCharm版本不一致导致的,需要获取和PyCharm同一版本的插件安装,即2019.2或以上版本。 父主题: PyCharm
步骤中会提示 ├── llama2-13b-hf |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示
在安装ma-cli时会默认同时安装所需的依赖包。当显示“Successfully installed”时,表示ma-cli安装完成。 如果在安装过程中报错提示缺少相应的依赖包,请根据报错提示执行如下命令进行依赖包安装。 pip install xxxx 其中,xxxx为依赖包的名称。 父主题: ModelArts
Parameter分布到不同的NPU 增加卡数重新训练,未解决找相关人员定位。 问题2:访问容器目录时提示Permission denied 由于在容器中没有相应目录的权限,会导致访问时提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。 chmod
ModelArts会定期收集资源池中各节点的关键资源(GPU、NPU、CPU、Memory等)的使用情况并上报到AOM,用户可直接在AOM上查看默认配置好的基础指标,详细步骤如下: 登录控制台,搜索AOM,进入“应用运维管理 AOM”控制台。 单击“监控 > 指标浏览”,进入“指标浏览”“页面”,单击“添加指标查询”。
本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新开一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_
审核并验收团队标注任务结果 审核团队标注任务结果 团队标注成员完成后,团队审核者可以对标注结果进行审核。 登录ModelArts管理控制台,左侧菜单栏选择“数据准备>数据标注”,在数据标注页面选择“我参与的”,在任务列表“操作”列单击“审核”,发起审核。 图1 发起审核 在审核页
后续操作步骤中会提示 ├── llama2-13b-hf |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |──
Notebook无法执行代码,如何处理? 运行训练代码,出现dead kernel,并导致实例崩溃 如何解决训练过程中出现的cudaCheckError错误? 开发环境提示空间不足,如何解决? 如何处理使用opencv.imshow造成的内核崩溃? 使用Windows下生成的文本文件时报错找不到路径? 创建N
Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。 414 Request-URI Too Large 请求的U