检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
TRAIN训练,EVALUATE评估 is_single_predict Boolean 单方还是双方预测 job_id String 作业id job_name String 作业名称 job_type String 作业类型。
为了在TICS平台实现多方作业,必须先在TICS中邀请成员。 邀请成员 空间成员登录TICS控制台。 在TICS控制台左侧,单击“空间管理”,在“我创建的空间”页签查找需要邀请合作方的空间并单击“邀请合作方”。
job_ins_type String 作业类型 1.SQL—多方安全计算 2.HFL—横向联邦学习 3.VFL_TRAIN---纵向联邦学习(训练) 4.VFL_EVALUATE---纵向联邦学习(评估) 5.VFL_ID_TRUNCATION---纵向联邦学习(样本粗筛) 6.
使开启算法保护的计算差值与预期得到的实际差值274不同,避免真实数据被窃取。
参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。 最终将计算完成的结果加密返回给作业发起方。 空间的整体配置通过空间管理员进行统一管理。 父主题: 多方安全计算场景
选择求交算法。 选择椭圆曲线。 选择大数据量节点。 配置重试参数。开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。开关关闭后,关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。 配置运行参数。
为防止资源滥用,平台限定了各服务资源的配额,对用户的资源数量和容量做了限制。如您最多可以创建多少台弹性云服务器、多少块云硬盘。 如果当前资源配额限制无法满足使用需要,您可以申请扩大配额。 怎样查看我的配额? 登录管理控制台。 单击管理控制台左上角的,选择区域和项目。
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
基于TICS实现端到端的企业积分查询作业 简介 阶段一:数据发布 阶段二:隐私规则防护 阶段三:审批防护 阶段四:基本计算能力验证 阶段五:基于MPC算法的高安全级别计算 阶段六:统计型作业的差分隐私保护
对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 节点密码 设置可信计算节点宿主机的登录密码。 确认密码 与“节点密码”保持一致即可。
空间API可通过调用IAM服务“获取用户Token接口”获取Token进行认证鉴权,支持在API Explorer平台在线调试。空间API支持的接口请参见表1。 使用计算节点API可以对计算节点进行操作,如新建连接器、新建数据集、新建多方安全计算作业等。
以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。 父主题: 可信数据交换场景
因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。 图1 企业信用评估应用场景示意图 父主题: 多方安全计算场景
查询节点的可用资源 云平台提供的云监控,可以对节点运行状态进行日常监控。您可以通过管理控制台,直观地查看节点的各项监控指标。 由于监控数据的获取与传输会花费一定时间,因此,云监控显示的是当前时间5~10分钟前的节点状态。如果您的节点刚创建完成,请等待5~10分钟后查看监控数据。
图1 填写参数 tics.task.concurrency参数提升的是tics平台提供的计算节点并发度,一般填写4左右即可,不建议超过8。 数据量提前过滤 作业运行参数中增加join.runtime.filter参数为true。
访问方式:基于TICS平台进行下载。 访问次数:用户可以访问次数的最大限制;超过访问次数,用户将无法访问作业文件。如果不填写,用户在访问截至时间前无限次访问。 图2 设置使用的字段及访问的需求 单击保存或者保存并提交审批。
对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 节点密码 - 设置可信计算节点宿主机的登录密码。 确认密码 - 与“节点密码”保持一致即可。
隐私保护等级:高级别时,默认启用高安全性的隐私计算的算法保障计算过程的安全,例如秘密分享加密、PSI等,但可能会影响性能以及部分作业正常执行。低级别时,使用国际标准的对称和非对称加密结合方式,在安全沙箱内进行解密计算。性能和灵活度较高。
因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。 图1 企业信用评估应用场景示意图 数据准备 以下数据和表结构是根据场景进行模拟的数据,并非真实数据。
HFL横向联邦,SQL联邦分析,VFL_EVALUATE联邦评估,VFL_FEATURE_SELECTION特征选择,VFL_ID_TRUNCATIONId截断,VFL_PREDICT联邦预测,VFL_SAMPLE_ALIGNMENT样本对齐,VFL_TRAIN联邦训练 job_name