检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图1-1 政府数据融合共治 金融联合营销 传统金融企业联合营销模式中,金融企业往往需要将双方的数据集中到一个安全实验室中进行标签融合,模型训练,但常面临数据泄露和隐私等挑战。
1.TRAIN训练,2.EVALUATE评估 hfl_platform_type String 联邦学习运行平台枚举值。
创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用TICS可信联邦学习进行联邦建模
TRAIN, EVALUATE hfl_platform_type String 联邦学习运行平台枚举值。
使开启算法保护的计算差值与预期得到的实际差值274不同,避免真实数据被窃取。
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
联邦预测作业管理 查询联邦预测作业列表 查询训练作业下的成功模型 父主题: 计算节点API
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
DATA_SELECTION.数据选择,SAMPLE_ALIGNMENT.样本对齐,FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String
DATA_SELECTION.数据选择,SAMPLE_ALIGNMENT.样本对齐,FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String
可信联邦学习作业管理 新建联邦学习作业 获取横向联邦学习作业详情 获取纵向联邦作业详情 保存纵向联邦作业 保存横向联邦学习作业 查询联邦学习作业列表 查询特征选择执行结果 删除联邦学习作业 执行横向联邦学习作业 执行纵向联邦模型训练作业 父主题: 计算节点API
可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的区块链对接存储,实现使用过程的可审计、可追溯。
可信联邦学习 允许多合作方参与的模型训练、评估作业。 联邦预测学习 允许多合作方参与的样本联合预测作业。 存储方式 指计算节点所属的CCE或IEF容器的工作负载,目前支持“OBS存储”和“主机存储”方式。
多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器化部署 参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、HCSO多种部署模式。
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
脱敏、水印保护,保障隐私数据安全; 多方协同过程中隐私信息交互(SQL JOIN数据碰撞、可信联邦学习模型参数)的加密保护; 支持安全多方计算,如基于隐私集合求交PSI(Private Set Intersection)技术的多方样本对齐、 基于差分隐私、加法同态、秘密共享等技术的训练模型保护
(作业发起方) 作业发起方还需要编写联邦学习训练脚本,其中需要用户自行实现读取数据、训练模型、评估模型、获取评估指标的逻辑。
TRAIN训练,EVALUATE评估 job_name String 作业名称 job_type String 作业类型。
计算节点为边缘节点部署时,需要手动在IEF平台对接AOM。 约束限制 对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。
TRAIN训练,EVALUATE评估 is_single_predict Boolean 单方还是双方预测 job_id String 作业id job_name String 作业名称 job_type String 作业类型。