检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
优势 提供地理专业算子:支持全栈Spark能力,具备丰富的Spark空间数据分析算法算子,全面支持结构化的遥感影像数据、非结构化的三维建模、激光点云等巨量数据的离线批处理,支持带有位置属性的动态流数据实时计算处理。
实时聚类 聚类算法是非监督算法中非常典型的一类算法,经典的K-Means算法通过提前确定类别数目,计算数据点之间的距离来分类。对于离线静态数据集,我们可以依赖领域中知识来确定类别数目,运行K-Means算法可以取得比较好的聚类效果。
实时聚类 聚类算法是非监督算法中非常典型的一类算法,经典的K-Means算法通过提前确定类别数目,计算数据点之间的距离来分类。对于离线静态数据集,我们可以依赖领域中知识来确定类别数目,运行K-Means算法可以取得比较好的聚类效果。
异常检测经典算法包括统计建模方法,基于距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。
示例 图片分类预测我们采用Mnist数据集作为流的输入,通过加载预训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。
异常检测经典算法包括统计建模方法,基于距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。
示例 图片分类预测我们采用Mnist数据集作为流的输入,通过加载预训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。
而电商平台则需要每天统计各平台的实时访问数据量、订单数、访问人数等等指标,从而能在显示大屏上实时展示相关数据,方便及时了解数据变化,有针对性地调整营销策略。而如何高效快捷地统计这些指标呢?
Flink Jar 包冲突,导致作业提交失败 问题描述 用户Flink程序的依赖包与DLI Flink平台的内置依赖包冲突,导致提交失败。 解决方案 首先您需要排除是否有冲突的Jar包。
修改Flink SQL语句、Flink Jar作业等操作 不支持 该操作修改了作业对资源的算法逻辑。 例如原有的算法的语句是执行加减运算,当前需要恢复的状态将算法的语句修改成为乘除取余的运算,是无法从checkpoint直接恢复的。
当需要将来自不同源的数据进行集中存储和处理时,迁移数据至DLI可以提供一个统一的数据平台。 您可以参考使用CDM迁移数据至DLI迁移数据至DLI后再提交作业。 如果业务需求需要实时访问和处理来自不同数据源的数据,跨源访问可以减少数据的复制和延迟。
DLI内置依赖包 DLI内置依赖包是平台默认提供的依赖包,用户打包Spark或Flink jar作业jar包时,不需要额外上传这些依赖包,以免与平台内置依赖包冲突。
低质量的SQL会对数据分析平台系统带来不可预料的冲击,影响系统的性能或者平台稳定性。
DLI服务在其计算资源中已经内置了一些常用的机器学习的算法库(具体可以参考”数据湖探索 DLI > 用户指南> 数据管理> 程序包管理> 内置依赖包”),这些常用算法库满足了大部分用户的使用场景。对于用户的PySpark程序依赖了内置算法库未提供的程序库该如何呢?
MRS基于Apache Kafka在平台部署并托管了Kafka集群。 前提条件 Kafka服务端的端口如果监听在hostname上,则需要将Kafka Broker节点的hostname和IP的对应关系添加到DLI队列中。
MRS基于Apache Kafka在平台部署并托管了Kafka集群。 前提条件 Kafka服务端的端口如果监听在hostname上,则需要将Kafka Broker节点的hostname和IP的对应关系添加到DLI队列中。
MRS基于Apache Kafka在平台部署并托管了Kafka集群。 前提条件 Kafka服务端的端口如果监听在hostname上,则需要将Kafka Broker节点的hostname和IP的对应关系添加到DLI队列中。
DWS Connector概述 数据仓库服务(Data Warehouse Service,简称DWS)是一种基于基础架构和平台的在线数据处理数据库,为用户提供海量数据挖掘和分析服务。DLI将Flink作业从数据仓库服务(DWS)中读取数据。
配额是指云平台预先设定的资源使用限制,包括资源数量和容量等。设置配额是为了确保资源合理的分配和使用,避免资源过度集中和资源浪费。 如果资源配额限制满足不了用户的使用需求,可以通过工单系统来提交您的申请,并告知您申请提高配额的理由。 在通过审理之后,系统会更新您的配额并进行通知。
它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样它也是一个数据管理平台,可用于发现,定义,和演化数据。 Flink与Hive的集成包含两个层面,一是利用了Hive的MetaStore作为持久化的Catalog,二是利用Flink来读写Hive的表。